Kinetic isotope effects as probes for hydrogen tunneling, coupled motion and dynamics contributions to enzyme catalysis

被引:74
作者
Kohen, A [1 ]
机构
[1] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA
关键词
D O I
10.3184/007967403103165486
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Since the early days of enzymology attempts have been made to deconvolute the various contributions of physical phenomena to enzyme catalysis. Here we present experimental and theoretical studies that examine the possible role of hydrogen tunneling, coupled motion, and enzyme dynamics in catalysis. In this review, we first introduce basic concepts of enzyme catalysis from a physical chemistry point of view. Then, we present several recent developments in the application of experimental tools that can probe tunneling, coupled motion, dynamic effects and other possible physical phenomena that may contribute to catalysis. These tools include kinetic isotope effects (KIEs), their temperature dependency and H/D/T mutual relations (the Swain-Schaad relationship). Several theories and models that assist in understanding those phenomena are also described. The possibility that these models invoke a direct role for the enzyme's dynamics (environmental fluctuations and rearrangements) is discussed. Finally, the need to compare the enzymatic reaction to the uncatalyzed one while investigating contributions to catalysis is emphasised. (C) 2003 Science Reviews.
引用
收藏
页码:119 / 156
页数:38
相关论文
共 111 条
[1]  
Abad JL, 2000, ANGEW CHEM INT EDIT, V39, P3279, DOI 10.1002/1521-3773(20000915)39:18<3279::AID-ANIE3279>3.0.CO
[2]  
2-G
[3]   Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Hammes-Schiffer, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) :3283-3293
[4]   Network of coupled promoting motions in enzyme catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Rajagopalan, PTR ;
Benkovic, SJ ;
Hammes-Schiffer, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2794-2799
[5]   Computational studies of the mechanism for proton and hydride transfer in liver alcohol dehydrogenase [J].
Agarwal, PK ;
Webb, SP ;
Hammes-Schiffer, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (19) :4803-4812
[6]   Quantum mechanical tunneling in methylamine dehydrogenase [J].
Alhambra, C ;
Sánchez, ML ;
Corchado, J ;
Gao, JL ;
Truhlar, DG .
CHEMICAL PHYSICS LETTERS, 2001, 347 (4-6) :512-518
[7]   Quantum dynamics of hydride transfer in enzyme catalysis [J].
Alhambra, C ;
Corchado, JC ;
Sánchez, ML ;
Gao, JL ;
Truhlar, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (34) :8197-8203
[8]   Secondary WT and D/T isotope effects in enzymatic enolization reactions. Coupled motion and tunneling in the triosephosphate isomerase reaction [J].
Alston, WC ;
Kanska, M ;
Murray, CJ .
BIOCHEMISTRY, 1996, 35 (39) :12873-12881
[9]   TUNNELING IN ELIMINATION-REACTIONS - TESTS OF CRITERIA FOR TUNNELING PREDICTED BY MODEL-CALCULATIONS [J].
AMIN, M ;
PRICE, RC ;
SAUNDERS, WH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (11) :4467-4471
[10]   Barrier passage and protein dynamics in enzymatically catalyzed reactions [J].
Antoniou, D ;
Caratzoulas, S ;
Kalyanaraman, C ;
Mincer, JS ;
Schwartz, SD .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (13) :3103-3112