Monitoring Photothermally Excited Nanoparticles via Multimodal Microscopy

被引:9
作者
Clarke, Matthew L. [1 ]
Chou, Shin Grace [1 ]
Hwang, Jeeseong [1 ]
机构
[1] Natl Inst Stand & Technol, Opt Technol Div, Gaithersburg, MD 20899 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2010年 / 1卷 / 11期
关键词
GOLD NANOPARTICLES; TEMPERATURE; NANORODS;
D O I
10.1021/jz100490e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Generation of heat using optically excited nanoparticles can be beneficial or detrimental depending on the application. Therefore, clinically applicable studies are being pursued in an effort to identify safe practices of nanoparticle-induced hyperthermia for the treatment of cancerous tissues using optical radiation. The imaging and characterization of localized heat production resulting from optically excited nanoparticles on both cellular and tissue levels is important for determination of nanoparticle dosage and optimal conditions for the radiation. In this report, we present a multimodal imaging method to monitor the local temperature change induced by photothermally excited, biologically relevant gold nanoshell clusters on the micrometer scale using two types of temperature-sensitive fluorescent reporters: Indo-1 or semiconductor quantum dots. The photoinduced heat flux from gold nanoshells is observed to be dependent on the dynamic motion of nanoparticles in the induced thermal gradient, with phenomena such as nanoparticle focusing strongly influencing the local temperature elevation.
引用
收藏
页码:1743 / 1748
页数:6
相关论文
共 33 条
[1]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[2]   Ultrafast electron dynamics in gold nanoshells [J].
Averitt, RD ;
Westcott, SL ;
Halas, NJ .
PHYSICAL REVIEW B, 1998, 58 (16) :10203-10206
[3]   Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J].
Baffou, G. ;
Kreuzer, M. P. ;
Kulzer, F. ;
Quidant, R. .
OPTICS EXPRESS, 2009, 17 (05) :3291-3298
[4]   Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging [J].
Benninger, RKP ;
Koç, Y ;
Hofmann, O ;
Requejo-Isidro, J ;
Neil, MAA ;
French, PMW ;
deMello, AJ .
ANALYTICAL CHEMISTRY, 2006, 78 (07) :2272-2278
[5]   Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells [J].
Chen, Jingyi ;
Wang, Danling ;
Xi, Jiefeng ;
Au, Leslie ;
Siekkinen, Andy ;
Warsen, Addie ;
Li, Zhi-Yuan ;
Zhang, Hui ;
Xia, Younan ;
Li, Xingde .
NANO LETTERS, 2007, 7 (05) :1318-1322
[6]  
CLARKE ML, 2008, P SPIE, V6849
[7]   Photothermal Efficiencies of Nanoshells and Nanorods for Clinical Therapeutic Applications [J].
Cole, Joseph R. ;
Mirin, Nikolay A. ;
Knight, Mark W. ;
Goodrich, Glenn P. ;
Halas, Naomi J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (28) :12090-12094
[8]   Colloidal Attraction Induced by a Temperature Gradient [J].
Di Leonardo, R. ;
Ianni, F. ;
Ruocco, G. .
LANGMUIR, 2009, 25 (08) :4247-4250
[9]   Why molecules move along a temperature gradient [J].
Duhr, Stefan ;
Braun, Dieter .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (52) :19678-19682
[10]   Fluorescence ratio thermometry in a microfluidic dual-beam laser trap [J].
Ebert, Susanne ;
Travis, Kort ;
Lincoln, Bryan ;
Guck, Jochen .
OPTICS EXPRESS, 2007, 15 (23) :15493-15499