Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure

被引:201
作者
Kissel, Christine K. [1 ]
Lehmann, Ralf [1 ]
Assmus, Birgit [1 ]
Aicher, Alexandra [1 ]
Honold, Joerg [1 ]
Fischer-Rasokat, Ulrich [1 ]
Heeschen, Christopher [1 ]
Spyridopoulos, Ioakim [1 ]
Dimmeler, Stefanie [1 ]
Zeiher, Andreas M. [1 ]
机构
[1] Goethe Univ Frankfurt, Dept Cardiol, D-60590 Frankfurt, Germany
关键词
D O I
10.1016/j.jacc.2007.01.095
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives This study investigated whether reduced levels of circulating endothelial progenitors cells (EPCs) in chronic heart failure (CHF) are secondary to an exhaustion of hematopoietic stem cells (HSCs) in the bone marrow or to reduced mobilization. Background Circulating EPCs presumably originate from bone marrow-derived HSC. Persistent mobilization of EPCs was shown to be associated with favorable left ventricular infarct remodeling processes. Methods We assessed the number and functional capacity of EPCs in 17 healthy controls, 25 patients with ischemic cardiomyopathy (ICM), and 20 patients with dilated cardiomyopathy (DCM). To document an impairment of HSC function in the bone marrow, the colony-forming unit capacity of bone marrow-derived mononuclear cells and the number of CD34(+) HSCs were examined in 6 healthy volunteers, 94 ICM patients, and 25 DCM patients. Results The number of EPCs was reduced in CHF, irrespective of its etiology. In contrast, the migratory capacity was selectively impaired in EPCs of ICM patients (4.8 +/- 4.0 migrated cells; DCM 9.7 +/- 5.8; p = 0.02). On multivariate analysis, ICM, advanced New York Heart Association functional class, and CHF were independent predictors of functional EPC impairment. The number of bone marrow-derived COW cells did not differ between the CHIF populations. However, colony-forming units (CFUs) were selectively reduced in ICM patients (54.4 +/- 24.6; DCM 68.1 +/- 26.9; p < 0.02). Ischemic cardiomyopathy was the only independent predictor of impaired CFU capacity. Impaired CFU capacity was associated with reduced matrix metalloproteinase-9 activity in the bone marrow plasma. Conclusions Ischemic cardiomyopathy is associated with selective impairment of progenitor cell function in the bone marrow and in the peripheral blood, which may contribute to an unfavorable left ventricular (LV) remodeling process.
引用
收藏
页码:2341 / 2349
页数:9
相关论文
共 33 条
[1]   Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells [J].
Aicher, A ;
Heeschen, C ;
Mildner-Rihm, C ;
Urbich, C ;
Ihling, C ;
Technau-Ihling, K ;
Zeiher, AM ;
Dimmeler, S .
NATURE MEDICINE, 2003, 9 (11) :1370-1376
[2]   Isolation of putative progenitor endothelial cells for angiogenesis [J].
Asahara, T ;
Murohara, T ;
Sullivan, A ;
Silver, M ;
vanderZee, R ;
Li, T ;
Witzenbichler, B ;
Schatteman, G ;
Isner, JM .
SCIENCE, 1997, 275 (5302) :964-967
[3]   Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI) -: Mechanistic insights from serial contrast-enhanced magnetic resonance imaging [J].
Britten, MB ;
Abolmaali, ND ;
Assmus, B ;
Lehmann, R ;
Honold, J ;
Schmitt, J ;
Vogl, TJ ;
Martin, H ;
Schächinger, V ;
Dimmeler, S ;
Zeiher, AM .
CIRCULATION, 2003, 108 (18) :2212-2218
[4]   Angiogenesis in health and disease [J].
Carmeliet, P .
NATURE MEDICINE, 2003, 9 (06) :653-660
[5]   Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress [J].
Dernbach, E ;
Urbich, C ;
Brandes, RP ;
Hofmann, WK ;
Zeiher, AM ;
Dimmeler, S .
BLOOD, 2004, 104 (12) :3591-3597
[6]   HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway [J].
Dimmeler, S ;
Aicher, A ;
Vasa, M ;
Mildner-Rihm, C ;
Adler, K ;
Tiemann, M ;
Rütten, H ;
Fichtlscherer, S ;
Martin, H ;
Zeiher, AM .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (03) :391-397
[7]   Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells [J].
Fujiyama, S ;
Amano, K ;
Uehira, K ;
Yoshida, M ;
Nishiwaki, Y ;
Nozawa, Y ;
Jin, D ;
Takai, S ;
Miyazaki, M ;
Egashira, K ;
Imada, T ;
Iwasaka, T ;
Matsubara, H .
CIRCULATION RESEARCH, 2003, 93 (10) :980-989
[8]   Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts - Implications for cell-based vascular therapy [J].
Griese, DP ;
Ehsan, A ;
Melo, LG ;
Kong, DL ;
Zhang, LN ;
Mann, MJ ;
Pratt, RE ;
Mulligan, RC ;
Dzau, VJ .
CIRCULATION, 2003, 108 (21) :2710-2715
[9]   S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death [J].
Gu, ZZ ;
Kaul, M ;
Yan, BX ;
Kridel, SJ ;
Cui, JK ;
Strongin, A ;
Smith, JW ;
Liddington, RC ;
Lipton, SA .
SCIENCE, 2002, 297 (5584) :1186-1190
[10]   Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment [J].
Hattori, K ;
Heissig, B ;
Wu, Y ;
Dias, S ;
Tejada, R ;
Ferris, B ;
Hicklin, DJ ;
Zhu, ZP ;
Bohlen, P ;
Witte, L ;
Hendrikx, J ;
Hackett, NR ;
Crystal, RG ;
Moore, MAS ;
Werb, Z ;
Lyden, D ;
Rafii, S .
NATURE MEDICINE, 2002, 8 (08) :841-849