Application of the level-set method to the implicit solvation of nonpolar molecules

被引:82
作者
Cheng, Li-Tien [1 ]
Dzubiella, Joachim
McCammon, J. Andrew
Li, Bo
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[3] Univ Calif San Diego, NSF, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1063/1.2757169
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A level-set method is developed for numerically capturing the equilibrium solute-solvent interface that is defined by the recently proposed variational implicit solvent model [Dzubiella, Swanson, and McCammon, Phys. Rev. Lett. 104, 527 (2006); J. Chem. Phys. 124, 084905 (2006)]. In the level-set method, a possible solute-solvent interface is represented by the zero level set (i.e., the zero level surface) of a level-set function and is eventually evolved into the equilibrium solute-solvent interface. The evolution law is determined by minimization of a solvation free energy functional that couples both the interfacial energy and the van der Waals type solute-solvent interaction energy. The surface evolution is thus an energy minimizing process, and the equilibrium solute-solvent interface is an output of this process. The method is implemented and applied to the solvation of nonpolar molecules such as two xenon atoms, two parallel paraffin plates, helical alkane chains, and a single fullerence C-60. The level-set solutions show good agreement for the solvation energies when compared to available molecular dynamics simulations. In particular, the method captures solvent dewetting (nanobubble formation) and quantitatively describes the interaction in the strongly hydrophobic plate system. (c) 2007 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 44 条
[1]   MOLECULAR-DYNAMICS SIMULATION OF THE ORTHOBARIC DENSITIES AND SURFACE-TENSION OF WATER [J].
ALEJANDRE, J ;
TILDESLEY, DJ ;
CHAPELA, GA .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (11) :4574-4583
[2]  
Allen M. P., 2017, Computer Simulation of Liquids, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[3]  
Angenent SB, 1997, J REINE ANGEW MATH, V482, P15
[4]  
[Anonymous], 1991, Differential geometry
[5]  
[Anonymous], 1957, VORLESUNGEN INHALT O
[6]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[7]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[8]   GENERALIZATION OF CLASSICAL-THEORY OF CAPILLARITY [J].
BORUVKA, L ;
NEUMANN, AW .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (12) :5464-5476
[9]   Efficient molecular surface generation using level-set methods [J].
Can, Tolga ;
Chen, Chao-I ;
Wang, Yuan-Fang .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2006, 25 (04) :442-454
[10]   Interfaces and the driving force of hydrophobic assembly [J].
Chandler, D .
NATURE, 2005, 437 (7059) :640-647