Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene

被引:68
作者
Essig, S. [1 ,2 ]
Marquardt, C. W. [1 ,2 ]
Vijayaraghavan, A. [1 ]
Ganzhorn, M. [1 ,2 ]
Dehm, S. [1 ]
Hennrich, F. [1 ]
Ou, F. [3 ]
Green, A. A. [4 ]
Sciascia, C. [7 ]
Bonaccorso, F. [7 ]
Bohnen, K-P. [5 ]
von Loehneysen, H. [2 ,5 ,8 ]
Kappes, M. M. [6 ,8 ]
Ajayan, P. M. [3 ]
Hersam, M. C. [4 ]
Ferrari, A. C. [7 ]
Krupke, R. [1 ,8 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Phys, D-76128 Karlsruhe, Germany
[3] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[4] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[5] Karlsruhe Inst Technol, Inst Festkorperphys, D-76021 Karlsruhe, Germany
[6] Karlsruhe Inst Technol, Inst Phys Chem, D-76128 Karlsruhe, Germany
[7] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[8] DFG CFN, D-76028 Karlsruhe, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 美国国家科学基金会;
关键词
Carbon nanotubes; graphene; electroluminescence; phonons; ELECTRONIC-STRUCTURE; LIGHT-EMISSION; SEPARATION;
D O I
10.1021/nl9039795
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on light emission from biased metallic single-wall carbon nanotube (SWNT), multiwall carbon nanotube (MWNT) and few-layer graphene (FLG) devices. SWNT devices were assembled from tubes with different diameters in the range 0.7-1.5 nm. They emit light in the visible spectrum with peaks at 1.4 and 1.8 eV. Similar peaks are observed For MWNT and FLG devices. We propose that this light emission is due to phonon-assisted radiative decay from populated pi* band states at the M point to the Fermi level at the K point. Since for most carbon nanotubes as well as for graphene the energy of unoccupied states at the M point is close to 1.6 eV, the observation of two emission peaks at similar to 1.6 +/- similar to 0.2 eV could indicate radiative decay under emission or absorption of optical phonons, respectively.
引用
收藏
页码:1589 / 1594
页数:6
相关论文
共 38 条
[1]   Electroluminescence from single-wall carbon nanotube network transistors [J].
Adam, E. ;
Aguirre, C. M. ;
Marty, L. ;
St-Antoine, B. C. ;
Meunier, F. ;
Desjardins, P. ;
Menard, D. ;
Martel, R. .
NANO LETTERS, 2008, 8 (08) :2351-2355
[2]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[3]   Photocurrent imaging of charge transport barriers in carbon nanotube devices [J].
Balasubramanian, K ;
Burghard, M ;
Kern, K ;
Scolari, M ;
Mews, A .
NANO LETTERS, 2005, 5 (03) :507-510
[4]  
BALCH A, 1993, J AM CHEM SOC, V117, P8926
[5]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[6]   Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy [J].
Doorn, Stephen K. ;
Araujo, Paulo T. ;
Hata, Kenji ;
Jorio, Ado .
PHYSICAL REVIEW B, 2008, 78 (16)
[7]   Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects [J].
Fantini, C ;
Jorio, A ;
Souza, M ;
Strano, MS ;
Dresselhaus, MS ;
Pimenta, MA .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :147406-1
[8]   Photoconductivity of single carbon nanotubes [J].
Freitag, M ;
Martin, Y ;
Misewich, JA ;
Martel, R ;
Avouris, PH .
NANO LETTERS, 2003, 3 (08) :1067-1071
[9]   NEW ONE-DIMENSIONAL CONDUCTORS - GRAPHITIC MICROTUBULES [J].
HAMADA, N ;
SAWADA, S ;
OSHIYAMA, A .
PHYSICAL REVIEW LETTERS, 1992, 68 (10) :1579-1581
[10]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568