ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL

被引:403
作者
Carrillo, J. A. [1 ]
Fornasier, M. [2 ]
Rosado, J. [3 ]
Toscani, G. [4 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, ICREA, Bellaterra 08193, Spain
[2] Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
[3] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
[4] Univ Pavia, Dept Math, I-27100 Pavia, Italy
关键词
flocking; nonlinear friction equations; mass transportation methods; CONTINUUM-LIMIT; BEHAVIOR; EQUATIONS; PARTICLE;
D O I
10.1137/090757290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the asymptotic behavior of solutions of the continuous kinetic version of flocking by Cucker and Smale [IEEE Trans. Automat. Control, 52 (2007), pp. 852-862], which describes the collective behavior of an ensemble of organisms, animals, or devices. This kinetic version introduced in [S.-Y. Ha and E. Tadmor, Kinet. Relat. Models, 1 (2008), pp. 415-435] is here obtained starting from a Boltzmann-type equation. The large-time behavior of the distribution in phase space is subsequently studied by means of particle approximations and a stability property in distances between measures. A continuous analogue of the theorems of [ F. Cucker and S. Smale, IEEE Trans. Automat. Control, 52 (2007), pp. 852-862] is shown to hold for the solutions on the kinetic model. More precisely, the solutions will concentrate exponentially fast in velocity to the mean velocity of the initial condition, while in space they will converge towards a translational flocking solution.
引用
收藏
页码:218 / 236
页数:19
相关论文
共 38 条
[1]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[2]  
[Anonymous], 1962, AM MATH SOC TRANSL
[3]   Discrete and continuous models of the dynamics of pelagic fish: Application to the capelin [J].
Barbaro, Alethea B. T. ;
Taylor, Kirk ;
Trethewey, Peterson F. ;
Youseff, Lamia ;
Birnir, Bjoern .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (12) :3397-3414
[4]  
Benedetto D, 1997, ESAIM-MATH MODEL NUM, V31, P615
[5]   Blow-up in multidimensional aggregation equations with mildly singular interaction kernels [J].
Bertozzi, Andrea L. ;
Carrillo, Jose A. ;
Laurent, Thomas .
NONLINEARITY, 2009, 22 (03) :683-710
[6]   An ODE model of the motion of pelagic fish [J].
Birnir, Bjoern .
JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (1-2) :535-568
[7]  
Bobylev A., 1988, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., V7, P111
[8]   Kinetic approach to long time behavior of linearized fast diffusion equations [J].
Caceres, Maria J. ;
Toscani, Giuseppe .
JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (04) :883-925
[9]  
Carrillo JA, 2007, RIV MAT UNIV PARMA, V6, P75
[10]   DOUBLE MILLING IN SELF-PROPELLED SWARMS FROM KINETIC THEORY [J].
Carrillo, J. A. ;
D'Orsogna, M. R. ;
Panferov, V. .
KINETIC AND RELATED MODELS, 2009, 2 (02) :363-378