Conformational dynamics and ensembles in protein folding

被引:111
作者
Munoz, Victor [1 ]
机构
[1] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[2] Univ Maryland, Ctr Biomol Struct & Org, College Pk, MD 20742 USA
来源
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE | 2007年 / 36卷
关键词
free-energy surfaces; fast-folding; folding barriers; downhill folding; single-molecule spectroscopy; protein motions; SINGLE-MOLECULE FLUORESCENCE; ENERGY LANDSCAPE THEORY; HELIX-COIL TRANSITION; 3-HELIX BUNDLE; DENATURED STATE; LAMBDA-REPRESSOR; LOOP FORMATION; KINETICS; SPEED; MODEL;
D O I
10.1146/annurev.biophys.36.040306.132608
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent experimental developments are changing the ways we interpret experimental data in protein folding, leading to a closer connection with theory and an improved understanding of some long-standing questions in the field. We now have a basic roadmap of the types of polypeptide motions and timescales that are relevant to the various folding stages. The folding barriers estimated with a variety of independent methods are consistently small, indicating that several fast-folding proteins are near or within the downhill folding regime. Finally, the structural and statistical analysis of global downhill folding is promising to open a new avenue of research in which folding mechanisms and the networks of noncovalent interactions that stabilize native structures are directly resolved in equilibrium experiments of nonmutated proteins.
引用
收藏
页码:395 / 412
页数:18
相关论文
共 85 条
[1]   Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering [J].
Akiyama, S ;
Takahashi, S ;
Kimura, T ;
Ishimori, K ;
Morishima, I ;
Nishikawa, Y ;
Fujisawa, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (03) :1329-1334
[2]   The nature of the free energy barriers to two-state folding [J].
Akmal, A ;
Muñoz, V .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 57 (01) :142-152
[3]   Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures [J].
Alm, E ;
Baker, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11305-11310
[4]   The speed limit for protein folding measured by triplet-triplet energy transfer [J].
Bieri, O ;
Wirz, J ;
Hellrung, B ;
Schutkowski, M ;
Drewello, M ;
Kiefhaber, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (17) :9597-9601
[5]   FIRST-PRINCIPLES CALCULATION OF THE FOLDING FREE-ENERGY OF A 3-HELIX BUNDLE PROTEIN [J].
BOCZKO, EM ;
BROOKS, CL .
SCIENCE, 1995, 269 (5222) :393-396
[6]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[7]   Kinetics of intramolecular contact formation in a denatured protein [J].
Buscaglia, M ;
Schuler, B ;
Lapidus, LJ ;
Eaton, WA ;
Hofrichter, J .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 332 (01) :9-12
[8]   KINETICS AND THERMODYNAMICS OF FOLDING IN MODEL PROTEINS [J].
CAMACHO, CJ ;
THIRUMALAI, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (13) :6369-6372
[9]   Kinetics of α-helix formation as diffusion on a one-dimensional free energy surface [J].
Doshi, U ;
Muñoz, V .
CHEMICAL PHYSICS, 2004, 307 (2-3) :129-136
[10]   The principles of α-helix formation:: Explaining complex kinetics with nucleation-elongation theory [J].
Doshi, UR ;
Muñoz, V .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (24) :8497-8506