A short exploration of structural noise

被引:147
作者
Doherty, John [1 ,3 ]
Welter, David [2 ]
机构
[1] Watermark Numer Comp, Brisbane, Qld 4075, Australia
[2] S Florida Water Management Dist, W Palm Beach, FL 33406 USA
[3] Flinders Univ S Australia, Natl Ctr Groundwater Res & Training, Adelaide, SA, Australia
关键词
PARAMETER-ESTIMATION; MODEL ERROR; AUTOMATIC CALIBRATION; HYDROLOGIC-MODELS; BAYESIAN-APPROACH; UNCERTAINTY; MULTIPLE; IDENTIFIABILITY; PREDICTIONS; ALGORITHM;
D O I
10.1029/2009WR008377
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
"Structural noise" is a term often used to describe model-to-measurement misfit that cannot be ascribed to measurement noise and therefore must be ascribed to the imperfect nature of a numerical model as a simulator of reality. As such, it is often the dominant contributor to model-to-measurement misfit. As the name "structural noise" implies, this type of misfit is often treated as an additive term to measurement noise when assessing model parameter and predictive uncertainty. This paper inquires into the nature of defect induced model-to-measurement misfit and provides a conceptual basis for accommodating it. It is shown that inasmuch as defect-induced model-to-measurement misfit can be characterized as "noise," this noise is likely to show a high degree of spatial and temporal correlation; furthermore, its covariance matrix may approach singularity. However, the deleterious impact of structural noise on the model calibration process may be mitigated in a variety of ways. These include adoption of a highly parameterized approach to model construction and calibration (including the strategic use of compensatory parameters where appropriate), processing of observations and their model-generated counterparts in ways that are able to filter out structural noise prior to fitting one to the other, and/or through implementation of a weighting strategy that gives prominence to observations that most resemble predictions required of a model.
引用
收藏
页数:14
相关论文
共 56 条
[1]  
[Anonymous], 2005, PARAMETER ESTIMATION, DOI DOI 10.1016/C2015-0-02458-3
[2]  
[Anonymous], 1984, GEOPHYS DATA ANAL DI, DOI DOI 10.1016/B978-0-12-490920-5.X5001-7
[3]   On the concept of model structural error [J].
Beven, K .
WATER SCIENCE AND TECHNOLOGY, 2005, 52 (06) :167-175
[4]   So just why would a modeller choose to be incoherent? [J].
Beven, Keith J. ;
Smith, Paul J. ;
Freer, Jim E. .
JOURNAL OF HYDROLOGY, 2008, 354 (1-4) :15-32
[5]   Determination and integration of appropriate spatial scales for river basin modelling [J].
Booij, MJ .
HYDROLOGICAL PROCESSES, 2003, 17 (13) :2581-2598
[6]  
Box G.E.P., 1976, Time Series Analysis: Forecasting and Control
[7]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252
[8]   A Bayesian approach to parameter estimation and pooling in nonlinear flood event models [J].
Campbell, EP ;
Fox, DR ;
Bates, BC .
WATER RESOURCES RESEARCH, 1999, 35 (01) :211-220
[9]   Regionalization of rainfall-runoff model parameters using Markov chain Monte Carlo samples [J].
Campbell, EP ;
Bates, BC .
WATER RESOURCES RESEARCH, 2001, 37 (03) :731-739
[10]  
Cooley R. L., 2004, 1679 US GEOL SURV