Topological invariants of time-reversal-invariant band structures

被引:1958
作者
Moore, J. E. [1 ]
Balents, L.
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
关键词
D O I
10.1103/PhysRevB.75.121306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The topological invariants of a time-reversal-invariant band structure in two dimensions are multiple copies of the Z(2) invariant found by Kane and Mele. Such invariants protect the "topological insulator" phase and give rise to a spin Hall effect carried by edge states. Each pair of bands related by time reversal is described by one Z(2) invariant, up to one less than half the dimension of the Bloch Hamiltonians. In three dimensions, there are four such invariants per band pair. The Z(2) invariants of a crystal determine the transitions between ordinary and topological insulators as its bands are occupied by electrons. We derive these invariants using maps from the Brillouin zone to the space of Bloch Hamiltonians and clarify the connections between Z(2) invariants, the integer invariants that underlie the integer quantum Hall effect, and previous invariants of T-invariant Fermi systems.
引用
收藏
页数:4
相关论文
共 22 条
[1]   TOPOLOGICAL INVARIANTS IN FERMI SYSTEMS WITH TIME-REVERSAL INVARIANCE [J].
AVRON, JE ;
SADUN, L ;
SEGERT, J ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1988, 61 (12) :1329-1332
[2]   HOMOTOPY AND QUANTIZATION IN CONDENSED MATTER PHYSICS [J].
AVRON, JE ;
SEILER, R ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (01) :51-53
[3]  
BERNEVIG BA, CONDMAT0611766
[4]  
FU L, CONDMAT0607699
[5]   Time reversal polarization and a Z2 adiabatic spin pump [J].
Fu, Liang ;
Kane, C. L. .
PHYSICAL REVIEW B, 2006, 74 (19)
[6]  
FUKUI T, CONDMAT0611423
[7]   Localization in disordered superconducting wires with broken spin-rotation symmetry [J].
Gruzberg, IA ;
Read, N ;
Vishveshwara, S .
PHYSICAL REVIEW B, 2005, 71 (24)
[8]  
Haldane F. D. M., UNPUB
[9]   CHERN NUMBER AND EDGE STATES IN THE INTEGER QUANTUM HALL-EFFECT [J].
HATSUGAI, Y .
PHYSICAL REVIEW LETTERS, 1993, 71 (22) :3697-3700
[10]   Quantum spin Hall effect in graphene [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)