Homology of iterated semidirect products of free groups

被引:38
作者
Cohen, DC
Suciu, AI
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
D O I
10.1016/S0022-4049(96)00153-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group which admits the structure of an iterated semidirect product of finitely generated free groups. We construct a finite, free resolution of the integers over the group ring of G. This resolution is used to define representations of groups which act compatibly on G, generalizing classical constructions of Magnus, Burau, and Gassner. Our construction also yields algorithms for computing the homology of the Milnor fiber of a fiber-type hyperplane arrangement, and more generally, the homology of the complement of such an arrangement with coefficients in an arbitrary local system. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:87 / 120
页数:34
相关论文
共 54 条
[1]   MILNOR NUMBERS OF NONISOLATED SAITO SINGULARITIES [J].
ALEKSANDROV, AG .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1987, 21 (01) :1-9
[2]  
[Anonymous], 1976, HOMOLOGY OFITERATED
[3]  
[Anonymous], 1992, ARRANGEMENTS HYPERPL
[5]  
Arnold V., 1969, Mat. Zametki, V5, P227
[6]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[7]  
BIRMAN J, 1994, CONT MATH, V169, P123
[8]  
Birman J S., 1975, ANN MATH STUD, DOI 10.1515/9781400881420
[9]   FREE RESOLUTIONS FOR SEMIDIRECT PRODUCTS [J].
BRADY, T .
TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (04) :535-537
[10]  
Brieskorn E. V., 1973, LECT NOTES MATH, V401, P21