Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 2. Application to molecules where frontier molecular orbital theory fails

被引:99
作者
Anderson, James S. M.
Melin, Junia
Ayers, Paul W.
机构
[1] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
[2] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA
关键词
D O I
10.1021/ct6001658
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper examines cases where frontier molecular orbital theory is known to fail, specifically electrophilic aromatic substitution reactions on isoquinoline and borazarophenanthrenes. While we are able to explain the experimental regioselectivity preferences for isoquinoline without too much difficulty, describing the regioselectivity of the borazarophenanthrenes is much more challenging. This is attributed to the fact that these molecules lie between the electrostatic (or charge) control and electron-transfer (or frontier-orbital) control paradigms. These molecules can, however, be described using the general-purpose reactivity indicator introduced in the first paper of this series. The variation of the general-purpose reactivity indicator with respect to the parameters is readily summed up using what we term "reactivity transition tables", which provide a compact summary of which products form under different reaction conditions. For the otherwise problematic molecules considered here, the new reactivity indicator performs better than either the Fukui function or the electrostatic potential alone.
引用
收藏
页码:375 / 389
页数:15
相关论文
共 42 条
[1]   Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 1. Theory and derivation of a general-purpose reactivity indicator [J].
Anderson, James S. M. ;
Melin, Junia ;
Ayers, Paul W. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2007, 3 (02) :358-374
[2]  
[Anonymous], ADV ORGANIC CHEM REA
[3]   Perspective on "Density functional approach to the frontier-electron theory of chemical reactivity" - Parr RG, Yang W (1984) J Am Chem Soc 106: 4049-4050 [J].
Ayers, PW ;
Levy, M .
THEORETICAL CHEMISTRY ACCOUNTS, 2000, 103 (3-4) :353-360
[4]   Variational principles for describing chemical reactions: Condensed reactivity indices [J].
Ayers, PW ;
Morrison, RC ;
Roy, RK .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (20) :8731-8744
[5]   An example where orbital relaxation is an important contribution to the Fukui function [J].
Bartolotti, LJ ;
Ayers, PW .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (06) :1146-1151
[6]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[7]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[8]   DENSITY FUNCTIONAL-APPROACH TO FRONTIER CONTROLLED REACTIONS [J].
BERKOWITZ, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (16) :4823-4825
[9]   ATOMIC CHARGES DERIVED FROM SEMIEMPIRICAL METHODS [J].
BESLER, BH ;
MERZ, KM ;
KOLLMAN, PA .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (04) :431-439
[10]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373