Using copulae to bound the Value-at-Risk for functions of dependent risks

被引:192
作者
Embrechts, P [1 ]
Hönig, A [1 ]
Juri, A [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland
关键词
comonotonicity; copulae; dependent risks; Frechet bounds; orthant dependence; risk management; Value-at-Risk;
D O I
10.1007/s007800200085
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The theory of copulae is known to provide a useful tool for modelling dependence in integrated risk management. In the present paper we review and extend some of the more recent results for finding distributional bounds for functions of dependent risks. As an example, the main emphasis is put on Value-at-Risk as a risk measure.
引用
收藏
页码:145 / 167
页数:23
相关论文
共 28 条
[1]  
[Anonymous], 2001, MODELLING DEPENDENCE
[2]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[3]  
B├a┬nuerle N., 1998, ASTIN BULL, V28, P59, DOI 10.2143/AST.28.1.519079
[4]  
COSSETTE H, 2002, SCHWEIZ AKTUARVER MI, P45
[5]   Stochastic bounds on sums of dependent risks [J].
Denuit, M ;
Genest, C ;
Marceau, É .
INSURANCE MATHEMATICS & ECONOMICS, 1999, 25 (01) :85-104
[6]  
Dhaene J., 1996, ASTIN BULL, V26, P201, DOI DOI 10.2143/AST.26.2.563219
[7]  
Embrechts P., 2002, Risk management: value at risk and beyond, V1, P176, DOI 10.1017/CBO9780511615337.008
[8]   BEST-POSSIBLE BOUNDS FOR THE DISTRIBUTION OF A SUM - A PROBLEM OF KOLMOGOROV [J].
FRANK, MJ ;
NELSEN, RB ;
SCHWEIZER, B .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 74 (02) :199-211
[9]  
Frank MJ, 1979, REND MAT, V12, P1
[10]  
Galambos J, 1987, ASYMPTOTIC THEORY EX