Predictive modeling of genome-wide mRNA expression: From modules to molecules

被引:59
作者
Bussemaker, Harmen J. [1 ]
Foat, Barrett C. [1 ]
Ward, Lucas D. [1 ]
机构
[1] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
来源
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE | 2007年 / 36卷
关键词
transcriptional and posttranscriptional regulation; cis-regulatory logic; quantitative modeling; sequence specificity; transcription factor activity;
D O I
10.1146/annurev.biophys.36.040306.132725
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Various algorithms are available for predicting mRNA expression and modeling gene regulatory processes. They differ in whether they rely on the existence of modules of coregulated genes or build a model that applies to all genes, whether they represent regulatory activities as hidden variables or as mRNA levels, and whether they implicitly or explicitly model the complex cis-regulatory logic of multiple interacting transcription factors binding the same DNA. The fact that functional genomics data of different types reflect the same molecular processes provides a natural strategy for integrative computational analysis. One promising avenue toward an accurate and comprehensive model of gene regulation combines biophysical modeling of the interactions among proteins, DNA, and RNA with the use of large-scale functional genomics data to estimate regulatory network connectivity and activity parameters. As the ability of these models to represent complex cis-regulatory logic increases, the need for approaches based on cross-species conservation may diminish.
引用
收藏
页码:329 / 347
页数:19
相关论文
共 98 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]  
Arnone MI, 1997, DEVELOPMENT, V124, P1851
[3]  
Bailey TL., 1994, P 2 INT C INT SYST M, V2, P28
[4]   Computational discovery of gene modules and regulatory networks [J].
Bar-Joseph, Z ;
Gerber, GK ;
Lee, TI ;
Rinaldi, NJ ;
Yoo, JY ;
Robert, F ;
Gordon, DB ;
Fraenkel, E ;
Jaakkola, TS ;
Young, RA ;
Gifford, DK .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1337-1342
[5]   Reverse engineering of regulatory networks in human B cells [J].
Basso, K ;
Margolin, AA ;
Stolovitzky, G ;
Klein, U ;
Dalla-Favera, R ;
Califano, A .
NATURE GENETICS, 2005, 37 (04) :382-390
[6]   Predicting gene expression from sequence [J].
Beer, MA ;
Tavazoie, S .
CELL, 2004, 117 (02) :185-198
[7]   Additivity in protein-DNA interactions: how good an approximation is it? [J].
Benos, PV ;
Bulyk, ML ;
Stormo, GD .
NUCLEIC ACIDS RESEARCH, 2002, 30 (20) :4442-4451
[8]   SELECTION OF DNA-BINDING SITES BY REGULATORY PROTEINS - STATISTICAL-MECHANICAL THEORY AND APPLICATION TO OPERATORS AND PROMOTERS [J].
BERG, OG ;
VONHIPPEL, PH .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 193 (04) :723-743
[9]   Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome [J].
Berman, BP ;
Nibu, Y ;
Pfeiffer, BD ;
Tomancak, P ;
Celniker, SE ;
Levine, M ;
Rubin, GM ;
Eisen, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :757-762
[10]   Transcriptional regulation by the numbers: models [J].
Bintu, L ;
Buchler, NE ;
Garcia, HG ;
Gerland, U ;
Hwa, T ;
Kondev, J ;
Phillips, R .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (02) :116-124