Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species

被引:291
作者
Daiber, Andreas [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Univ Med, Med Klin & Poliklin 2, Labor Mol Kardiol, D-55101 Mainz, Germany
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2010年 / 1797卷 / 6-7期
关键词
Redox regulation; Oxidative protein modification; Nitric oxide; Superoxide; Peroxynitrite; Mitochondrion; NADPH oxidase; SMOOTH-MUSCLE-CELLS; PROTEIN-KINASE-C; MANGANESE SUPEROXIDE-DISMUTASE; PERMEABILITY TRANSITION PORE; NITRIC-OXIDE SYNTHASE; PEROXYNITRITE-TREATED PROTEINS; RECEPTOR ANTAGONIST LOSARTAN; ISCHEMIA-REPERFUSION INJURY; ELECTRON-TRANSPORT CHAIN; CORONARY-ARTERY-DISEASE;
D O I
10.1016/j.bbabio.2010.01.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This review highlights the important role of redox signaling between mitochondria and NADPH oxidases. Besides the definition and general importance of redox signaling, the cross-talk between mitochondria! and Nox-derived reactive oxygen species (ROS) is discussed on the basis of 4 different examples. In the first model, angiotensin-II is discussed as a trigger for NADPH oxidase activation with subsequent ROS-dependent opening of mitochondrial ATP-sensitive potassium channels leading to depolarization of mitochondrial membrane potential followed by mitochondrial ROS formation and respiratory dysfunction. This concept was supported by observations that ethidium bromide-induced mitochondrial damage suppressed angiotensin-II-dependent increase in Nox1 and oxidative stress. In another example hypoxia was used as a stimulator of mitochondrial ROS formation and by using pharmacological and genetic inhibitors, a role of mitochondrial ROS for the induction of NADPH oxidase via PKC epsilon was demonstrated. The third model was based on cell death by serum withdrawal that promotes the production of ROS in human 293T cells by stimulating both the mitochondria and Nox1. By superior molecular biological methods the authors showed that mitochondria were responsible for the fast onset of ROS formation followed by a slower but long-lasting oxidative stress condition based on the activation of an NADPH oxidase (Nox1) in response to the fast mitochondrial ROS formation. Finally, a cross-talk between mitochondria and NADPH oxidases (Nox2) was shown in nitroglycerin-induced tolerance involving the mitochondrial permeability transition pore and ATP-sensitive potassium channels. The use of these redox signaling pathways as pharmacological targets is briefly discussed. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:897 / 906
页数:10
相关论文
共 178 条
[1]   Protein Tyrosine Nitration: Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins [J].
Abello, Nicolas ;
Kerstjens, Huib A. M. ;
Postma, Dirkje S. ;
Bischoff, Rainer .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (07) :3222-3238
[2]   Roles of superoxide, peroxynitrite, and protein kinase C in the development of tolerance to nitroglycerin [J].
Abou-Mohamed, G ;
Johnson, JA ;
Jin, L ;
El-Remessy, AB ;
Do, K ;
Kaesemeyer, WH ;
Caldwell, RB ;
Caldwell, RW .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2004, 308 (01) :289-299
[3]   Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury [J].
Adlam, VJ ;
Harrison, JC ;
Porteous, CM ;
James, AM ;
Smith, RAJ ;
Murphy, MP ;
Sammut, IA .
FASEB JOURNAL, 2005, 19 (09) :1088-1095
[4]   Opening mitoKATP increases superoxide generation from complex I of the electron transport chain [J].
Andrukhiv, Anastasia ;
Costa, Alexandre D. ;
West, Ian C. ;
Garlid, Keith D. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2006, 291 (05) :H2067-H2074
[5]   From mitochondrial dynamics to arrhythmias [J].
Aon, M. A. ;
Cortassa, S. ;
Akar, F. G. ;
Brown, D. A. ;
Zhou, L. ;
O'Rourke, B. .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2009, 41 (10) :1940-1948
[6]   Mitochondrial criticality: A new concept at the turning point of life or death [J].
Aon, MA ;
Cortassa, S ;
Akar, FG ;
O'Rourke, B .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2006, 1762 (02) :232-240
[7]   Percolation and criticality in a mitochondrial network [J].
Aon, MA ;
Cortassa, S ;
O'Rourke, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (13) :4447-4452
[8]   Mitochondrial metabolism, redox signaling, and fusion:: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer [J].
Archer, Stephen L. ;
Gomberg-Maitland, Mardi ;
Maitland, Michael L. ;
Rich, Stuart ;
Garcia, Joe G. N. ;
Weir, E. Kenneth .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2008, 294 (02) :H570-H578
[9]   NITRIC-OXIDE ACTIVATES GUANYLATE CYCLASE AND INCREASES GUANOSINE 3'-5'-CYCLIC MONOPHOSPHATE LEVELS IN VARIOUS TISSUE PREPARATIONS [J].
ARNOLD, WP ;
MITTAL, CK ;
KATSUKI, S ;
MURAD, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (08) :3203-3207
[10]   Protection against peroxynitrite [J].
Arteel, GE ;
Briviba, K ;
Sies, H .
FEBS LETTERS, 1999, 445 (2-3) :226-230