A functional proteomics approach to signal transduction

被引:30
作者
Graves, PR [1 ]
Haystead, TAJ
机构
[1] Duke Univ, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
[2] Serenex Inc, Durham, NC 27710 USA
来源
RECENT PROGRESS IN HORMONE RESEARCH, VOL 58: HUMAN GENOME AND ENDOCRINOLOGY | 2003年 / 58卷
关键词
D O I
10.1210/rp.58.1.1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The purpose of this review is to highlight how proteomics techniques can be used to answer specific questions related to signal transduction in a wide variety of systems. In our laboratory, we utilize proteomic technologies to elucidate signal transduction pathways involved in smooth muscle contraction and relaxation, cell growth and tumorigenesis, and the pathogenesis of malaria. We see the real application of this technology as a tool to enhance the power of existing approaches such as classical yeast and mouse genetics, tissue culture, protein expression systems, and site-directed mutagenesis. Our basic approach is to examine only those-proteins that differ by some variable from the control sample. In this way, the number of proteins to be processed by electrophoresis, Edman degradation, or mass spectrometry is greatly reduced. In addition, since only those proteins that change in response to a given biological treatment are analyzed, the experimental outcome provides information about specific signaling pathways. Examples of typical experiments in our laboratory are measurement of changes in protein phosphorylation in response to treatment of cells with growth factors or specific drugs, characterization of proteins associated with a bait protein in a "pull-down" experiment, or measurement of changes in protein expression. Frequently, in these experiments, it is necessary to define complex protein mixtures. To achieve this goal, we utilize a variety of techniques to isolate specific types of proteins or "subproteomes" for further analysis. In this review, we discuss strategies used in our laboratory for studying signaling pathways, including subproteome isolation, proteome mining, and analysis of the phosphoproteome.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 56 条
[1]   DETERMINATION OF THE SITE OF TYROSINE PHOSPHORYLATION AT THE LOW PICOMOLE LEVEL BY AUTOMATED SOLID-PHASE SEQUENCE-ANALYSIS [J].
AEBERSOLD, R ;
WATTS, JD ;
MORRISON, HD ;
BURES, EJ .
ANALYTICAL BIOCHEMISTRY, 1991, 199 (01) :51-60
[2]   Reg1p targets protein phosphatase 1 to dephosphorylate hexokinase II in Saccharomyces cerevisiae:: characterizing the effects of a phosphatase subunit on the yeast proteome [J].
Alms, GR ;
Sanz, P ;
Carlson, M ;
Haystead, TAJ .
EMBO JOURNAL, 1999, 18 (15) :4157-4168
[3]   A comparison of selected mRNA and protein abundances in human liver [J].
Anderson, L ;
Seilhamer, J .
ELECTROPHORESIS, 1997, 18 (3-4) :533-537
[4]   ISOLATION OF PHOSPHOPROTEINS BY IMMOBILIZED METAL (FE-3+) AFFINITY-CHROMATOGRAPHY [J].
ANDERSSON, L ;
PORATH, J .
ANALYTICAL BIOCHEMISTRY, 1986, 154 (01) :250-254
[5]  
[Anonymous], 2007, MOL CELL PROTEOMICS, DOI DOI 10.1074/mcp.T600046-MCP200
[6]   Smooth muscle myosin phosphatase-associated kinase induces Ca2+ sensitization via myosin phosphatase inhibition [J].
Borman, MA ;
MacDonald, JA ;
Murányi, A ;
Hartshorne, DJ ;
Haystead, TAJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (26) :23441-23446
[7]  
Boyle WJ., 1991, METHOD ENZYMOL, V201, P110
[8]  
Burlingame AL, 1998, ANAL CHEM, V70, p647R
[9]  
Cao P, 2000, RAPID COMMUN MASS SP, V14, P1600, DOI 10.1002/1097-0231(20000915)14:17<1600::AID-RCM68>3.0.CO
[10]  
2-V