Mie simulations as an error source in mineral aerosol radiative forcing calculations

被引:64
作者
Kahnert, M. [1 ]
Nousiainen, T.
Raisanen, P.
机构
[1] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden
[2] Univ Helsinki, Helsinki, Finland
关键词
asymmetry parameter; desert dust; radiative transfer; scattering; climate;
D O I
10.1002/qj.40
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The role of aerosols remains a major uncertainty for climate and climate change. For the direct radiative forcing by mineral aerosols, the uncertainty in the refractive index in has been regarded as the most important error source, while the impact of aerosol non-sphericity has been considered a minor issue and is neglected in climate models. Here, the errors caused by the spherical particle approximation (SPA) are evaluated by comparing radiative fluxes based on (i) Mie simulations and (ii) laboratory measurements of aerosol optical properties. Furthermore, they are contrasted with the errors related to the uncertainty in the refractive index. These two error sources are found to be of comparable magnitude, although they are strongly dependent on optical depth, surface albedo, and particle size. Thus, our results provide evidence that, contrary to common beliefs, the use of spherical model particles in radiative transfer simulations is probably among the major sources of error in quantifying the climate forcing effect of mineral aerosols. This stems from misrepresentation of the scattering phase function and the asymmetry parameter. Aerosol single-scattering computations based on non-spherical model particles are expected to reduce the shape-related errors and thus significantly improve the accuracy of radiative forcing simulations. Copyright (c) 2007 Royal Meteorological Society.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 29 条
[1]  
[Anonymous], 2001, REPORT INTERGOVERNME
[2]  
d'Almeida G.A., 1991, ATMOSPHERIC AEROSOLS
[3]   ON THE VARIABILITY OF DESERT AEROSOL RADIATIVE CHARACTERISTICS [J].
DALMEIDA, GA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1987, 92 (D3) :3017-3026
[4]  
Dubovik O, 2002, J ATMOS SCI, V59, P590, DOI 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO
[5]  
2
[6]   Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust [J].
Dubovik, Oleg ;
Sinyuk, Alexander ;
Lapyonok, Tatyana ;
Holben, Brent N. ;
Mishchenko, Michael ;
Yang, Ping ;
Eck, Tom F. ;
Volten, Hester ;
Munoz, Olga ;
Veihelmann, Ben ;
van der Zande, Wim J. ;
Leon, Jean-Francois ;
Sorokin, Michael ;
Slutsker, Ilya .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D11)
[7]  
Egan W. G., 1979, OPTICAL PROPERTIES I
[8]   Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation [J].
Grenfell, TC ;
Warren, SG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D24) :31697-31709
[9]   An emerging ground-based aerosol climatology:: Aerosol optical depth from AERONET [J].
Holben, BN ;
Tanré, D ;
Smirnov, A ;
Eck, TF ;
Slutsker, I ;
Abuhassan, N ;
Newcomb, WW ;
Schafer, JS ;
Chatenet, B ;
Lavenu, F ;
Kaufman, YJ ;
Castle, JV ;
Setzer, A ;
Markham, B ;
Clark, D ;
Frouin, R ;
Halthore, R ;
Karnieli, A ;
O'Neill, NT ;
Pietras, C ;
Pinker, RT ;
Voss, K ;
Zibordi, G .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D11) :12067-12097
[10]   Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes? [J].
Kahnert, FM ;
Stamnes, JJ ;
Stamnes, K .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (03) :521-531