Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes

被引:142
作者
Miao, Feng
Wu, Xiwei
Zhang, Lingxiao
Yuan, Yate-Ching
Riggs, Arthur D.
Natarajan, Rama
机构
[1] Beckman Res Inst City Hope, Dept Diabet, Duarte, CA 91010 USA
[2] Beckman Res Inst City Hope, Dept Biomed Informat, Duarte, CA 91010 USA
[3] Beckman Res Inst City Hope, Dept Biol, Duarte, CA 91010 USA
关键词
D O I
10.1074/jbc.M609446200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aberrant histone lysine methylation patterns that change chromatin structure can promote dysregulated gene transcription and disease progression. Diabetic conditions such as high glucose (HG) are known to alter key pathologic pathways. However, their impact on cellular histone lysine methylation is unknown. We hypothesized that chronic HG can induce aberrant changes in histone H3 lysine 4 and lysine 9 dimethylation (H3K4me2 and H3K9me2) within target cells. Chromatin immunoprecipitation linked to microarrays (ChIP-on-chip) is currently a widely used approach for acquiring genome-wide information on histone modifications. We adopted this approach to profile and compare the variations in H3K4me2 and H3K9me2 in human gene coding and CpG island regions in THP-1 monocytes cultured in normal glucose and HG. Subsequently, we identified key relevant candidate genes displaying differential changes in H3K4me2 and H3K9me2 in HG versus normal glucose and also validated them with follow-up conventional ChIPs. Relevance to human diabetes was demonstrated by noting that H3K9me2 at the coding and promoter regions of two candidate genes was significantly greater in blood monocytes of diabetic patients relative to normal controls similar to the THP-1 data. In addition, regular mRNA profiling with cDNA arrays revealed correlations between mRNA and H3K9me2 levels. These novel results show histone methylation variations, for the first time, under diabetic conditions at a genome-wide level.
引用
收藏
页码:13854 / 13863
页数:10
相关论文
共 43 条
[1]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[2]   Genomic maps and comparative analysis of histone modifications in human and mouse [J].
Bernstein, BE ;
Kamal, M ;
Lindblad-Toh, K ;
Bekiranov, S ;
Bailey, DK ;
Huebert, DJ ;
McMahon, S ;
Karlsson, EK ;
Kulbokas, EJ ;
Gingeras, TR ;
Schreiber, SL ;
Lander, ES .
CELL, 2005, 120 (02) :169-181
[3]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700
[4]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[5]  
BROWNLEE M, 1988, NEW ENGL J MED, V318, P1315
[6]   PURIFICATION OF CPG ISLANDS USING A METHYLATED DNA-BINDING COLUMN [J].
CROSS, SH ;
CHARLTON, JA ;
NAN, XS ;
BIRD, AP .
NATURE GENETICS, 1994, 6 (03) :236-244
[7]   Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer [J].
Fraga, MF ;
Ballestar, E ;
Villar-Garea, A ;
Boix-Chornet, M ;
Espada, J ;
Schotta, G ;
Bonaldi, T ;
Haydon, C ;
Ropero, S ;
Petrie, K ;
Iyer, NG ;
Pérez-Rosado, A ;
Calvo, E ;
Lopez, JA ;
Cano, A ;
Calasanz, MJ ;
Colomer, D ;
Piris, MA ;
Ahn, N ;
Imhof, A ;
Caldas, C ;
Jenuwein, T ;
Esteller, M .
NATURE GENETICS, 2005, 37 (04) :391-400
[8]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[9]   Transcriptional regulatory code of a eukaryotic genome [J].
Harbison, CT ;
Gordon, DB ;
Lee, TI ;
Rinaldi, NJ ;
Macisaac, KD ;
Danford, TW ;
Hannett, NM ;
Tagne, JB ;
Reynolds, DB ;
Yoo, J ;
Jennings, EG ;
Zeitlinger, J ;
Pokholok, DK ;
Kellis, M ;
Rolfe, PA ;
Takusagawa, KT ;
Lander, ES ;
Gifford, DK ;
Fraenkel, E ;
Young, RA .
NATURE, 2004, 431 (7004) :99-104
[10]   CpG Island microarray probe sequences derived from a physical library are representative of CpG Islands annotated on the human genome [J].
Heisler, LE ;
Torti, D ;
Boutros, PC ;
Watson, J ;
Chan, C ;
Winegarden, N ;
Takahashi, M ;
Yau, P ;
Huang, THM ;
Farnham, PJ ;
Jurisica, I ;
Woodgett, JR ;
Bremner, R ;
Penn, LZ ;
Der, SD .
NUCLEIC ACIDS RESEARCH, 2005, 33 (09) :2952-2961