Protein translocons: Multifunctional mediators of protein translocation across membranes

被引:177
作者
Schnell, DJ [1 ]
Hebert, DN
机构
[1] Univ Massachusetts, Program Plant Biol, Amherst, MA 01003 USA
[2] Univ Massachusetts, Mol & Cellular Biol Program, Amherst, MA 01003 USA
[3] Univ Massachusetts, Dept Biochem & Mol Biol, Amherst, MA 01003 USA
关键词
D O I
10.1016/S0092-8674(03)00110-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein translocation systems consist of complex molecular machines whose activities are not limited to unidirectional protein targeting. Protein translocons and their associated receptor systems can be viewed as dynamic modular units whose interactions, and therefore functions, are regulated in response to specific signals. This flexibility allows translocons to interact with multiple signal receptor systems to manage the targeting of topologically distinct classes of proteins, to mediate targeting to different suborganellar compartments, and to respond to stress and developmental cues. Furthermore, the activities of translocons are tightly coordinated with downstream events, thereby providing a direct link between targeting and protein maturation.
引用
收藏
页码:491 / 505
页数:15
相关论文
共 86 条
[1]   Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting [J].
Bacher, G ;
Lutcke, H ;
Jungnickel, B ;
Rapoport, TA ;
Dobberstein, B .
NATURE, 1996, 381 (6579) :248-251
[2]   Molecular biology of chloroplast biogenesis: gene expression, protein import and intraorganellar sorting [J].
Bauer, J ;
Hiltbrunner, A ;
Kessler, F .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (03) :420-433
[3]   Architecture of the protein-conducting channel associated with the translating 80S ribosome [J].
Beckmann, R ;
Spahn, CMT ;
Eswar, N ;
Helmers, J ;
Penczek, PA ;
Sali, A ;
Frank, J ;
Blobel, G .
CELL, 2001, 107 (03) :361-372
[4]   The Tat protein export pathway [J].
Berks, BC ;
Sargent, F ;
Palmer, T .
MOLECULAR MICROBIOLOGY, 2000, 35 (02) :260-274
[5]   INTRACELLULAR PROTEIN TOPOGENESIS [J].
BLOBEL, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (03) :1496-1500
[6]   TRANSFER OF PROTEINS ACROSS MEMBRANES .1. PRESENCE OF PROTEOLYTICALLY PROCESSED AND UNPROCESSED NASCENT IMMUNOGLOBULIN LIGHT-CHAINS ON MEMBRANE-BOUND RIBOSOMES OF MURINE MYELOMA [J].
BLOBEL, G ;
DOBBERSTEIN, B .
JOURNAL OF CELL BIOLOGY, 1975, 67 (03) :835-851
[7]   Three-dimensional structure of the bacterial protein-translocation complex SecYEG [J].
Breyton, C ;
Haase, W ;
Rapoport, TA ;
Kühlbrandt, W ;
Collinson, I .
NATURE, 2002, 418 (6898) :662-665
[8]   A SEC63P-BIP COMPLEX FROM YEAST IS REQUIRED FOR PROTEIN TRANSLOCATION IN A RECONSTITUTED PROTEOLIPOSOME [J].
BRODSKY, JL ;
SCHEKMAN, R .
JOURNAL OF CELL BIOLOGY, 1993, 123 (06) :1355-1363
[9]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[10]   Role of ribosome and translocon complex during folding of influenza hemagglutinin in the endoplasmic reticulum of living cells [J].
Chen, W ;
Helenius, A .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (02) :765-772