One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization

被引:102
作者
Cheng, J [1 ]
Yamamoto, M
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Gunma Univ, Fac Engn, Dept Math, Kiryu, Gumma 3768515, Japan
[3] Univ Tokyo, Dept Math Sci, Tokyo 153, Japan
关键词
D O I
10.1088/0266-5611/16/4/101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the conditional stability estimate for ill-posed inverse problems, we propose a new strategy for a priori choice of regularizing parameters in Tikhonov's regularization and we show that it can be applied to a wide class of inverse problems. The convergence rate of the regularized solutions is also proved.
引用
收藏
页码:L31 / L38
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 1998, NONLINEAR ILL POSED
[2]  
[Anonymous], 1986, AM MATH SOC, DOI DOI 10.1090/S0894-0347-1992-1124979-1
[3]  
Baumeister J., 1987, Stable solution of inverse problems
[4]   Stable determination of boundaries from Cauchy data [J].
Beretta, E ;
Vessella, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 30 (01) :220-232
[5]  
BRUCKNER G, 2000, IN PRESS J INVERSE I
[6]   Stability for an inverse boundary problem of determining a part of a boundary [J].
Bukhgeim, AL ;
Cheng, J ;
Yamamoto, M .
INVERSE PROBLEMS, 1999, 15 (04) :1021-1032
[7]  
BUKUSHINSKY A, 1994, 3 POSED PROBLEMS THE
[8]  
CHENG J, 1998, J INVERSE ILL-POSE P, V6, P115
[9]  
Cheng J, 2000, J INTEGRAL EQUAT, V12, P39
[10]  
Engl H., 1996, Mathematics and Its Applications, V375, DOI DOI 10.1007/978-94-009-1740-8