Light penetration in bladder tissue: implications for the intravesical photodynamic therapy of bladder tumours

被引:42
作者
Shackley, DC
Whitehurst, C
Moore, JV
George, NJR
Betts, CD
Clarke, NW
机构
[1] Salford Royal Hosp Trust, Hope Hosp, Dept Urol, Salford, Lancs, England
[2] Univ S Manchester Hosp, Dept Urol, Manchester M20 8LR, Lancs, England
[3] Christie Hosp & Holt Radium Inst, Dept Urol, Manchester M20 9BX, Lancs, England
关键词
photodynamic therapy; transitional cell carcinoma; light penetration; optical properties; bladder;
D O I
10.1046/j.1464-410x.2000.00872.x
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Objectives To assess (i) the optical properties and depth of penetration of varying wavelengths of light in ex-vivo human bladder tissue, using specimens of normal bladder wall, transitional cell carcinoma (TCC) and bladder tissue after exposure to ionizing radiation; and (ii) to estimate the depth of bladder wall containing cancer that could potentially be treated with intravesical photodynamic therapy (PDT), assuming satisfactory tissue levels of photosensitizer. Materials and methods The study included 11 cystectomy specimens containing invasive TCC (five from patients who had previously received external-beam bladder radiotherapy, but with recurrent TCC) and three 'normal' bladders removed from patients treated by exenteration surgery for extravesical pelvic cancer. Full-thickness bladder wall and tumour samples were taken from these specimens and using an 'intravesical' and a previously validated interstitial model, the optical penetration depths (i.e. the tissue depth at which the light fluence is 37% of incident) were calculated at wavelengths of 633, 673 and 693 nm. Results There were no significant differences in light penetration between normal and tumour-affected bladder tissue at each wavelength. There were significant differences in light penetration among wavelengths; light at 693 nm penetrated approximate to 40% further than light at 633 nm (P < 0.002). The light currently used in bladder PDT (633 nm) has a mean (sem) optical penetration depth of 4.0 (0.1) mm within TCC. In addition, at this wavelength, there was 29% greater light penetration in previously irradiated than in unirradiated bladder wall (P = 0.001). This did not occur in the tumour-affected bladder. Conclusions Bladder tissue is relatively more translucent than other human tissues and there is therefore great potential for PDT in the treatment of bladder cancer. As there is no difference in light penetration between TCC and normal bladder tissue, a tumour-specific response with diffuse illumination of the bladder will depend on drug localization within the tumour. The currently used wavelength of 633 nm can be expected to exert a PDT effect within bladder tumour up to a depth of 20 mm. Increasing the wavelength will allow deeper pathology to be treated.
引用
收藏
页码:638 / 643
页数:6
相关论文
共 25 条
[1]   OPTICAL PROPAGATION IN TISSUE WITH ANISOTROPIC SCATTERING [J].
ARNFIELD, MR ;
TULIP, J ;
MCPHEE, MS .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1988, 35 (05) :372-381
[2]   OPTIMIZATION OF PHOTODYNAMIC THERAPY LIGHT DOSE DISTRIBUTION AND TREATMENT VOLUME BY MULTIFIBER INSERTIONS [J].
BOLIN, FP ;
PREUSS, LE ;
TAYLOR, RC .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1987, 46 (05) :609-617
[3]   PHOTODYNAMIC THERAPY TO SCIENTISTS AND CLINICIAN - ONE WORLD OR 2 [J].
BOWN, SG .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1990, 6 (1-2) :1-12
[4]   Quantitative studies of the kinetics of 5-aminolaevulinic acid induced fluorescence in bladder transitional cell carcinoma [J].
Datta, SN ;
Loh, CS ;
MacRobert, AJ ;
Whatley, SD ;
Matthews, PN .
BRITISH JOURNAL OF CANCER, 1998, 78 (08) :1113-1118
[5]  
DHALLEWIN MA, 1996, SPIE INT SOC OPT ENG, V3191, P210
[6]  
DOIRON DR, 1983, PORPHYRIN PHOTOSENSI, V160, P293
[7]   PHOTODYNAMIC THERAPY [J].
DOUGHERTY, TJ ;
MARCUS, SL .
EUROPEAN JOURNAL OF CANCER, 1992, 28A (10) :1734-1742
[8]  
EICHLER J, 1977, RADIAT ENVIRON BIOPH, V14, P243
[9]   CLINICAL AND PRECLINICAL PHOTODYNAMIC THERAPY [J].
FISHER, AMR ;
MURPHREE, AL ;
GOMER, CJ .
LASERS IN SURGERY AND MEDICINE, 1995, 17 (01) :2-31
[10]  
HABOUBI NY, 1989, CAUSATION CLIN MANAG, V20, P30