An upper bound on the size of a code with the κ-identifiable parent property

被引:27
作者
Blackburn, SR [1 ]
机构
[1] Univ London, Royal Holloway & Bedford New Coll, Dept Math, Egham TW20 0EX, Surrey, England
关键词
identifiable parent property; fingerprinting;
D O I
10.1016/S0097-3165(03)00030-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper gives an upper bound on the size of a q-ary code of length n that has the k-identifiable parent property. One consequence of this bound is that the optimal rate of such a code is determined in many cases when q--> infinity with k and n fixed. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 7 条
[1]   Parent-identifying codes [J].
Alon, N ;
Fischer, E ;
Szegedy, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 95 (02) :349-359
[2]  
ALON N, 2002, NEW BOUNDS PARENT ID
[3]  
[Anonymous], 1994, LNCS
[4]   A hypergraph approach to the identifying parent property:: The case of multiple parents [J].
Barg, A ;
Cohen, G ;
Encheva, S ;
Kabatiansky, G ;
Zémor, G .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (03) :423-431
[5]   On codes with the identifiable parent property [J].
Hollmann, HDL ;
van Lint, JH ;
Linnartz, JP ;
Tolhuizen, LMGM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 82 (02) :121-133
[6]   Combinatorial properties of frameproof and traceability codes [J].
Staddon, JN ;
Stinson, DR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (03) :1042-1049
[7]  
YEMANE Y, 2002, THESIS U LONDON