Magnitude and sign scaling in power-law correlated time series

被引:132
作者
Ashkenazy, Y [1 ]
Havlin, S
Ivanov, PC
Peng, CK
Schulte-Frohlinde, V
Stanley, HE
机构
[1] Boston Univ, Ctr Polymer Studies, Dept Phys, Boston, MA 02215 USA
[2] Bar Ilan Univ, Gonda Goldschmied Ctr, Dept Phys, Ramat Gan, Israel
[3] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
scaling; magnitude correlations; multifractal spectrum; volatility; nonlinearity;
D O I
10.1016/S0378-4371(03)00008-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A time series can be decomposed into two sub-series: a magnitude series and a sign series. Here we analyze separately the scaling properties of the magnitude series and the sign series using the increment time series of cardiac interbeat intervals as an example. We find that time series having identical distributions and long-range correlation properties can exhibit quite different temporal organizations of the magnitude and sign sub-series. From the cases we study, it follows that the long-range correlations in the magnitude series indicate nonlinear behavior. Specifically, our results suggest that the correlation exponent of the magnitude series is a monotonically increasing function of the multifractal spectrum width of the original series. On the other hand, the sign series mainly relates to linear properties of the original series. We also show that the magnitude and sign series of the heart interbeat interval series can be used for diagnosis purposes. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 56 条
[1]   Nonlinear analysis of cardiac rhythm fluctuations using DFA method [J].
Absil, PA ;
Sepulchre, R ;
Bilge, A ;
Gérard, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 272 (1-2) :235-244
[2]  
AMEODO A, 1995, PHYS REV LETT, V74, P3293
[3]   Towards log-normal statistics in high Reynolds number turbulence [J].
Arneodo, A ;
Manneville, S ;
Muzy, JF .
EUROPEAN PHYSICAL JOURNAL B, 1998, 1 (01) :129-140
[4]   Random cascades on wavelet dyadic trees [J].
Arneodo, A ;
Bacry, E ;
Muzy, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (08) :4142-4164
[5]   A stochastic model of human gait dynamics [J].
Ashkenazy, Y ;
Hausdorff, JA ;
Ivanov, PC ;
Stanley, HE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 316 (1-4) :662-670
[6]   Decomposition of heartbeat time series: Scaling analysis of the sign sequence [J].
Ashkenazy, Y ;
Ivanov, PC ;
Havlin, S ;
Peng, CK ;
Yamamoto, Y ;
Goldberger, AL ;
Stanley, HE .
COMPUTERS IN CARDIOLOGY 2000, VOL 27, 2000, 27 :139-142
[7]   Scale-specific and scale-independent measures of heart rate variability as risk indicators [J].
Ashkenazy, Y ;
Lewkowicz, M ;
Levitan, J ;
Havlin, S ;
Saermark, K ;
Moelgaard, H ;
Thomsen, PEB ;
Moller, M ;
Hintze, U ;
Huikuri, HV .
EUROPHYSICS LETTERS, 2001, 53 (06) :709-715
[8]   Magnitude and sign correlations in heartbeat fluctuations [J].
Ashkenazy, Y ;
Ivanov, PC ;
Havlin, S ;
Peng, CK ;
Goldberger, AL ;
Stanley, HE .
PHYSICAL REVIEW LETTERS, 2001, 86 (09) :1900-1903
[9]   Discrimination between healthy and sick cardiac autonomic nervous system by detrended heart rate variability analysis [J].
Ashkenazy, Y ;
Lewkowicz, M ;
Levitan, J ;
Havlin, S ;
Saermark, K ;
Moelgaard, H ;
Thomsen, PEB .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1999, 7 (01) :85-91
[10]   Long-range correlations in genomic DNA: A signature of the nucleosomal structure [J].
Audit, B ;
Thermes, C ;
Vaillant, C ;
d'Aubenton-Carafa, Y ;
Muzy, JF ;
Ameodo, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (11) :2471-2474