Stabilization of a coordinated network of rotating rigid bodies

被引:14
作者
Nair, S [1 ]
Leonard, NE [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.1429530
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a stabilizing and coordinating control law for a network of spinning rigid bodies with unstable dynamics. The control law stabilizes each rigid body to spin about its unstable, intermediate axis while also aligning all of the spinning rigid bodies so that their orientations in inertial space are identical. The control law is derived using kinetic energy shaping for stabilization and potential shaping for coupling. The coupled system is Lagrangian with symmetry, and energy methods are used to prove stability and coordinated behavior.
引用
收藏
页码:4690 / 4695
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 1992, LECT MECH
[2]   STABILIZATION OF RIGID BODY DYNAMICS BY INTERNAL AND EXTERNAL TORQUES [J].
BLOCH, AM ;
KRISHNAPRASAD, PS ;
MARSDEN, JE ;
DEALVAREZ, GS .
AUTOMATICA, 1992, 28 (04) :745-756
[3]   Controlled Lagrangians and the stabilization of Euler-Poincare mechanical systems [J].
Bloch, AM ;
Leonard, NE ;
Marsden, JE .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2001, 11 (03) :191-214
[4]  
BULLO F, 2001, THESIS CALTECH
[5]  
CENDRA H, ASTEROID PAIR DYNAMI
[6]  
FIORELLI E, 2004, P IEEE AUTONOMOUS UN
[7]  
HANSSMANN H, 2004, S REDUCTION COORDINA
[8]   Stabilization of relative equilibria [J].
Jalnapurkar, SM ;
Marsden, JE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) :1483-1491
[9]  
JALNAPURKAR SM, 1999, REGUL CHAOTIC DYN, V3, P161
[10]  
NAIR S, 2003, P 42 IEEE C DEC CONT