Nanotubes Functionalized with Lipids and Natural Amino Acid Dendrimers: A New Strategy to Create Nanomaterials for Delivering Systemic RNAi

被引:52
作者
McCarroll, Joshua [1 ]
Baigude, Huricha [1 ,2 ]
Yang, Chao-Shun [1 ,2 ]
Rana, Tariq M. [1 ,2 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Mol Pharmacol & Biochem, Worcester, MA 01605 USA
[2] Burnham Inst Med Res, Program RNA Biol, Sanford Childrens Hlth Res Ctr, La Jolla, CA 92037 USA
关键词
WALLED CARBON NANOTUBES; SMALL INTERFERING RNA; IN-VIVO; INTRACELLULAR DELIVERY; MAMMALIAN-CELLS; MODIFIED SIRNAS; GENE; POTENT; APOLIPOPROTEIN; BINDING;
D O I
10.1021/bc900296z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-walled carbon nanotubes (SWNT) have unique electronic, mechanical, and structural properties as well as chemical stability that make them ideal nanomaterials for applications in materials science and medicine. Here, we report the design and creation of it novel strategy for functionalizing SWNT to systemically silence a target gene in mice by delivering siRNA at doses of <1 mg/kg. SWNT were functionalized with lipids and natural amino acid-based dendrimers (TOT) and complexed to siRNA. Our model Study of the silencing efficiency of the TOT-siRNA complex showed that, in mice injected at 0.96 mg/kg, an endogenous gene for apoliproprotein B (ApoB) was silenced in liver, plasma levels of ApoB decreased, and total plasma cholesterol decreased. TOT-siRNA treatment was nontoxic and did not induce an immune response. Most (80%) of the RNA trigger molecules assembled with TOT were cleared from the body 48 h after injection, suggesting that the nanotubes did not cause siRNA aggregation or inhibit biodegradation and drug clearance in vivo. These results provide the first evidence that nanotubes can be functionalized with lipids and amino acids to systemically deliver siRNA. This new technology not only can be used for systemic RNAi, but may also be used to deliver other drugs in vivo.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 38 条
[1]   Tolerance for mutations and chemical modifications in a siRNA [J].
Amarzguioui, M ;
Holen, T ;
Babaie, E ;
Prydz, H .
NUCLEIC ACIDS RESEARCH, 2003, 31 (02) :589-595
[2]   Synthesis of sphere-type monodispersed oligosaccharide-polypeptide dendrimers [J].
Baigude, H ;
Katsuraya, K ;
Okuyama, K ;
Tokunaga, S ;
Uryu, T .
MACROMOLECULES, 2003, 36 (19) :7100-7106
[3]   Design and creation of new nanomaterials for therapeutic RNAi [J].
Baigude, Huricha ;
McCarroll, Joshua ;
Yang, Chao-shun ;
Swain, Pamela M. ;
Rana, Tariq M. .
ACS CHEMICAL BIOLOGY, 2007, 2 (04) :237-241
[4]   A RECEPTOR-MEDIATED PATHWAY FOR CHOLESTEROL HOMEOSTASIS [J].
BROWN, MS ;
GOLDSTEIN, JL .
SCIENCE, 1986, 232 (4746) :34-47
[5]   Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems [J].
Caplen, NJ ;
Parrish, S ;
Imani, F ;
Fire, A ;
Morgan, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (17) :9742-9747
[6]   Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells [J].
Chiu, YL ;
Ali, A ;
Chu, CY ;
Cao, H ;
Rana, TM .
CHEMISTRY & BIOLOGY, 2004, 11 (08) :1165-1175
[7]   siRNA function in RNAi: A chemical modification analysis [J].
Chiu, YL ;
Rana, TM .
RNA, 2003, 9 (09) :1034-1048
[8]   RNAi in human cells: Basic structural and functional features of small interfering RNA [J].
Chiu, YL ;
Rana, TM .
MOLECULAR CELL, 2002, 10 (03) :549-561
[9]   Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54 [J].
Chu, Chia-ying ;
Rana, Tariq M. .
PLOS BIOLOGY, 2006, 4 (07) :1122-1136
[10]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498