Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis

被引:282
作者
Losada, A [1 ]
Hirano, M [1 ]
Hirano, T [1 ]
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
关键词
cohesin; condensin; sister chromatid cohesion; chromosome condensation; histone H3 phosphorylation;
D O I
10.1101/gad.249202
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The establishment of metaphase chromosomes is an essential prerequisite of sister chromatid separation in anaphase. It involves the coordinated action of cohesin and condensin, protein complexes that mediate cohesion and condensation, respectively. In metazoans, most cohesin dissociates from chromatin at prophase, coincident with association of condensin. Whether loosening of cohesion at the onset of mitosis facilitates the compaction process, resolution of the sister chromatids, or both, remains unknown. We have found that the prophase release of cohesin is completely blocked when two mitotic kinases, aurora B and polo-like kinase (Plx1), are simultaneously depleted from Xenopus egg extracts. Condensin loading onto chromatin is not affected under this condition and rod-shaped chromosomes are produced that show an apparently normal level of compaction. However, the resolution of sister chromatids within these chromosomes is severely compromised. This is not because of inhibition of topoisomerase II activity that is also required for the resolution process. We propose that aurora B and Plx1 cooperate to destabilize the sister chromatid linkage through distinct mechanisms that may involve phosphorylation of histone H3 and cohesin, respectively. More importantly, our results strongly suggest that cohesin release at the onset of mitosis is essential for sister chromatid resolution but not for condensin-mediated compaction.
引用
收藏
页码:3004 / 3016
页数:13
相关论文
共 53 条
[1]   INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow [J].
Adams, RR ;
Wheatley, SP ;
Gouldsworthy, AM ;
Kandels-Lewis, SE ;
Carmena, M ;
Smythe, C ;
Gerloff, DL ;
Earnshaw, WD .
CURRENT BIOLOGY, 2000, 10 (17) :1075-1078
[2]   Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation [J].
Adams, RR ;
Maiato, H ;
Earnshaw, WC ;
Carmena, M .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :865-879
[3]   Chromosomal passengers and the (aurora) ABCs of mitosis [J].
Adams, RR ;
Carmena, M ;
Earnshaw, WC .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :49-54
[4]   Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast [J].
Alexandru, G ;
Uhlmann, F ;
Mechtler, K ;
Poupart, MA ;
Nasmyth, K .
CELL, 2001, 105 (04) :459-472
[5]   Condensin and cohesin display different arm conformations with characteristic hinge angles [J].
Anderson, DE ;
Losada, A ;
Erickson, HP ;
Hirano, T .
JOURNAL OF CELL BIOLOGY, 2002, 156 (03) :419-424
[6]   The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the, spindle checkpoint [J].
Biggins, S ;
Murray, AW .
GENES & DEVELOPMENT, 2001, 15 (23) :3118-3129
[7]   The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast [J].
Biggins, S ;
Severin, FF ;
Bhalla, N ;
Sassoon, I ;
Hyman, AA ;
Murray, AW .
GENES & DEVELOPMENT, 1999, 13 (05) :532-544
[8]   Conserved organization of centromeric chromatin in flies and humans [J].
Blower, MD ;
Sullivan, BA ;
Karpen, GH .
DEVELOPMENTAL CELL, 2002, 2 (03) :319-330
[9]   The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation [J].
de la Barre, AE ;
Angelov, D ;
Molla, A ;
Dimitrov, S .
EMBO JOURNAL, 2001, 20 (22) :6383-6393
[10]   Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis [J].
Giet, R ;
Glover, DM .
JOURNAL OF CELL BIOLOGY, 2001, 152 (04) :669-681