On a class of marginally stable positive real systems

被引:46
作者
Joshi, SM [1 ]
Gupta, S [1 ]
机构
[1] VIGYAN INC,HAMPTON,VA 23666
关键词
D O I
10.1109/9.481623
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A class of marginally stable positive real systems is defined which is less restrictive than the previously published definitions of strictly positive real systems. A minimal realization and state-space characterization of such systems are presented, and it is proven that controllers belonging to this class robustly stabilize positive real plants.
引用
收藏
页码:152 / 155
页数:4
相关论文
共 10 条
[1]  
Anderson B. D. O., 1967, SIAM Journal on Control, V5, P171
[2]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[3]   FREQUENCY-DOMAIN CONDITIONS FOR STRICTLY POSITIVE REAL FUNCTIONS [J].
IOANNOU, P ;
TAO, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (01) :53-54
[4]  
Kailath T., 1980, Linear systems
[5]  
Kaufman H., 1994, DIRECT ADAPTIVE CONT
[6]   STRICTLY POSITIVE REAL TRANSFER-FUNCTIONS REVISITED [J].
LOZANOLEAL, R ;
JOSHI, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (11) :1243-1245
[7]  
Newcomb RW., 1966, LINEAR MULTIPORT SYN
[8]   STRICTLY POSITIVE REAL MATRICES AND THE LEFSCHETZ-KALMAN-YAKUBOVICH LEMMA [J].
TAO, G ;
IOANNOU, PA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (12) :1183-1185
[9]   STRICTLY POSITIVE REAL FUNCTIONS AND LEFSCHETZ-KALMAN-YAKUBOVICH (LKY) LEMMA [J].
TAYLOR, JH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1974, AS21 (02) :310-311
[10]   TIME DOMAIN AND FREQUENCY-DOMAIN CONDITIONS FOR STRICT POSITIVE REALNESS [J].
WEN, JT .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (10) :988-992