NON-EUCLIDEAN STATISTICS FOR COVARIANCE MATRICES, WITH APPLICATIONS TO DIFFUSION TENSOR IMAGING

被引:254
作者
Dryden, Ian L. [1 ,2 ]
Koloydenko, Alexey [3 ]
Zhou, Diwei [2 ]
机构
[1] Univ S Carolina, Dept Stat, LeConte Coll, Columbia, SC 29208 USA
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[3] Univ London, Dept Math, Egham TW20 0EX, Surrey, England
关键词
Anisotropy; Cholesky; geodesic; matrix logarithm; principal components; Procrustes; Riemannian; shape; size; Wishart; EXTRINSIC SAMPLE MEANS; MANIFOLDS; DECOMPOSITIONS; SHAPES;
D O I
10.1214/09-AOAS249
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The statistical analysis of covariance matrix data is considered and, in particular, methodology is discussed which takes into account the non-Euclidean nature of the space of positive semi-definite symmetric matrices. The main motivation for the work is the analysis of diffusion tensors in medical image analysis. The primary focus is on estimation of a mean covariance matrix and, in particular, on the use of Procrustes size-and-shape space. Comparisons are made with other estimation techniques, including using the matrix logarithm, matrix square root and Cholesky decomposition. Applications to diffusion tensor imaging are considered and, in particular, a new measure of fractional anisotropy called Procrustes Anisotropy is discussed.
引用
收藏
页码:1102 / 1123
页数:22
相关论文
共 44 条
[1]  
Alexa M, 2002, ACM T GRAPHIC, V21, P380, DOI 10.1145/566570.566592
[2]   Multiple-fiber reconstruction algorithms for diffusion MRI [J].
Alexander, DC .
WHITE MATTER IN COGNITIVE NEUROSCIENCE: ADVANCES IN DIFFUSION TENSOR IMAGING AND ITS APPLICATIONS, 2005, 1064 :113-+
[3]   Assessment of brain growth in early childhood using deformation-based morphometry [J].
Aljabar, P. ;
Bhatia, K. K. ;
Murgasov, M. ;
Hajnal, J. V. ;
Boardman, J. P. ;
Srinivasan, L. ;
Rutherford, M. A. ;
Dyet, L. E. ;
Edwards, A. D. ;
Rueckert, D. .
NEUROIMAGE, 2008, 39 (01) :348-358
[4]   Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis [J].
Amaral, G. J. A. ;
Dryden, I. L. ;
Wood, Andrew T. A. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (478) :695-707
[5]  
[Anonymous], 1948, ANN I HENRI POINCARE
[6]  
[Anonymous], 2007, R LANG ENV STAT COMP
[7]   Geometric means in a novel vector space structure on symmetric positive-definite matrices [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) :328-347
[8]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[9]  
Basu S, 2006, LECT NOTES COMPUT SC, V4190, P117
[10]   Large sample theory of intrinsic and extrinsic sample means on manifolds - II [J].
Bhattacharya, R ;
Patrangenaru, V .
ANNALS OF STATISTICS, 2005, 33 (03) :1225-1259