Nonlinear dynamics of filaments. III - Instabilities of helical rods

被引:41
作者
Goriely, A
Tabor, M
机构
[1] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[2] Free Univ Brussels, Dept Math, B-1050 Brussels, Belgium
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1997年 / 453卷 / 1967期
关键词
D O I
10.1098/rspa.1997.0138
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The time-dependent Kirchhoff equations for thin elastic rods are used to study the linear stability of twisted helical rods with intrinsic curvature and twist. Using a newly developed perturbation scheme, we derive the general dispersion relations governing the stability of various helical configurations. We show that helices with no terminal forces are always dynamically stable. We also compute the most stable helical shape against twist perturbations and show that different unstable modes can be excited in different regions of the parameter space and can sometimes coexist. The linearly unstable modes are computed and explicit forms are given.
引用
收藏
页码:2583 / 2601
页数:19
相关论文
共 19 条
[1]  
[Anonymous], 1926, TREATISE MATH THEORY
[2]  
Antman S. S., 1995, NONLINEAR PROBLEMS E
[3]   THEORY OF TWISTING AND BENDING OF CHAIN MACROMOLECULES - ANALYSIS OF THE FLUORESCENCE DEPOLARIZATION OF DNA [J].
BARKLEY, MD ;
ZIMM, BH .
JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (06) :2991-3007
[4]   ON THE DYNAMICS OF RODS IN THE THEORY OF KIRCHHOFF AND CLEBSCH [J].
COLEMAN, BD ;
DILL, EH ;
LEMBO, M ;
LU, Z ;
TOBIAS, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 121 (04) :339-359
[5]   A new class of flexure-free torsional vibrations of annular rods [J].
Coleman, BD ;
Lembo, M ;
Tobias, I .
MECCANICA, 1996, 31 (05) :565-575
[6]  
DILL EH, 1992, ARCH HIST EXACT SCI, V44, P2
[7]  
Ge Z, 1996, J NONLINEAR SCI, V6, P19
[8]   Nonlinear dynamics of filaments .1. Dynamical instabilities [J].
Goriely, A ;
Tabor, M .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 105 (1-3) :20-44
[9]   Nonlinear dynamics of filaments .2. Nonlinear analysis [J].
Goriely, A ;
Tabor, M .
PHYSICA D, 1997, 105 (1-3) :45-61
[10]   New amplitude equations for thin elastic rods [J].
Goriely, A ;
Tabor, M .
PHYSICAL REVIEW LETTERS, 1996, 77 (17) :3537-3540