Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen

被引:246
作者
Jena, Bikash Kumar [1 ]
Raj, C. Retna [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Kharagpur 721302, W Bengal, India
关键词
D O I
10.1021/la063243z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article describes the synthesis of branched flower-like gold (Au) nanocrystals and their electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Gold nanoflowers (GNFs) were obtained by a one-pot synthesis using N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES) as a reducing/stabilizing agent. The GNFs have been characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical measurements. The UV-visible spectra show two bands corresponding to the transverse and longitudinal surface plasmon (SP) absorption at 532 and 720 nm, respectively, for the colloidal GNFs. The GNFs were self-assembled on a sol-gel-derived silicate network, which was preassembled on a polycrystalline Au electrode and used for electrocatalytic applications. The GNFs retain their morphology on the silicate network; the UV-visible diffuse reflectance spectra (DRS) of GNFs on the silicate network show longitudinal and transverse bands as in the case of colloidal GNFs. The GNFs show excellent electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Oxidation of methanol in alkaline solution was observed at similar to 0.245 V, which is much less positive than that on an unmodified polycrystalline gold electrode. Reduction of oxygen to H2O2 and the further reduction of H2O2 to water in neutral pH were observed at less negative potentials on the GNFs electrode. The electrocatalytic activity of GNFs is significantly higher than that of the spherically shaped citrate-stabilized Au nanoparticles (SGNs).
引用
收藏
页码:4064 / 4070
页数:7
相关论文
共 62 条
[1]   CHARGE-TRANSFER AT PARTIALLY BLOCKED SURFACES - A MODEL FOR THE CASE OF MICROSCOPIC ACTIVE AND INACTIVE SITES [J].
AMATORE, C ;
SAVEANT, JM ;
TESSIER, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1983, 147 (1-2) :39-51
[2]   INVESTIGATION OF A CARBON-SUPPORTED QUATERNARY PT-RU-SN-W CATALYST FOR DIRECT METHANOL FUEL-CELLS [J].
ARICO, AS ;
POLTARZEWSKI, Z ;
KIM, H ;
MORANA, A ;
GIORDANO, N ;
ANTONUCCI, V .
JOURNAL OF POWER SOURCES, 1995, 55 (02) :159-166
[3]  
ARICO AS, 2001, MOD ASPECT ELECTROC, V34, P53
[4]   Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques [J].
Assiongbon, KA ;
Roy, D .
SURFACE SCIENCE, 2005, 594 (1-3) :99-119
[5]   ELECTROOXIDATION OF CO AND METHANOL ON GRAPHITE-BASED PLATINUM-ELECTRODES COMBINED WITH OXIDE-SUPPORTED ULTRAFINE GOLD PARTICLES [J].
BISWAS, PC ;
NODASAKA, Y ;
ENYO, M ;
HARUTA, M .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 381 (1-2) :167-177
[6]   Electrooxidation of methanol on polycrystalline and single crystal gold electrodes [J].
Borkowska, Z ;
Tymosiak-Zielinska, A ;
Shul, G .
ELECTROCHIMICA ACTA, 2004, 49 (08) :1209-1220
[7]   The electrochemistry of gold: II the electrocatalytic behaviour of the metal in aqueous media [J].
Burke, LD ;
Nugent, PF .
GOLD BULLETIN, 1998, 31 (02) :39-50
[8]   Electrocatalytic activity of ordered intermetallic phases for fuel cell applications [J].
Casado-Rivera, E ;
Volpe, DJ ;
Alden, L ;
Lind, C ;
Downie, C ;
Vázquez-Alvarez, T ;
Angelo, ACD ;
DiSalvo, FJ ;
Abruña, HD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (12) :4043-4049
[9]   Monopod, bipod, tripod, and tetrapod gold nanocrystals [J].
Chen, SH ;
Wang, ZL ;
Ballato, J ;
Foulger, SH ;
Carroll, DL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (52) :16186-16187
[10]   ULTRAMICROELECTRODE ENSEMBLES - COMPARISON OF EXPERIMENTAL AND THEORETICAL RESPONSES AND EVALUATION OF ELECTROANALYTICAL DETECTION LIMITS [J].
CHENG, IF ;
WHITELEY, LD ;
MARTIN, CR .
ANALYTICAL CHEMISTRY, 1989, 61 (07) :762-766