RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III

被引:41
作者
Calin-Jageman, I [1 ]
Nicholson, AW [1 ]
机构
[1] Wayne State Univ, Dept Biol Sci, Detroit, MI 48202 USA
关键词
D O I
10.1093/nar/gkg329
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Members of the ribonuclease III superfamily of double-strand-specific endoribonucleases participate in diverse RNA maturation and decay pathways. Ribonuclease III of the gram-negative bacterium Escherichia coli processes rRNA and mRNA precursors, and its catalytic action can regulate gene expression by controlling mRNA translation and stability. It has been proposed that E.coli RNase III can function in a non-catalytic manner, by binding RNA without cleaving phosphodiesters. However, there has been no direct evidence for this mode of action. We describe here an RNA, derived from the T7 phage R1.1 RNase III substrate, that is resistant to cleavage in vitro by E.coli RNase III but retains comparable binding affinity. R1.1[CL3B] RNA is recognized by RNase III in the same manner as R1.1 RNA, as revealed by the similar inhibitory effects of a specific mutation in both substrates. Structure-probing assays and Mfold analysis indicate that R1.1[CL3B] RNA possesses a bulge- helix-bulge motif in place of the R1.1 asymmetric internal loop. The presence of both bulges is required for uncoupling. The bulge-helix-bulge motif acts as a 'catalytic' antideterminant, which is distinct from recognition antideterminants, which inhibit RNase III binding.
引用
收藏
页码:2381 / 2392
页数:12
相关论文
共 41 条
[1]   RNASE-III STIMULATES THE TRANSLATION OF THE CIII GENE OF BACTERIOPHAGE-LAMBDA [J].
ALTUVIA, S ;
LOCKERGILADI, H ;
KOBY, S ;
BENNUN, O ;
OPPENHEIM, AB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (18) :6511-6515
[2]   Escherichia coli ribonuclease III:: Affinity purification of hexahistidine-tagged enzyme and assays for substrate binding and cleavage [J].
Amarasinghe, AK ;
Calin-Jageman, I ;
Harmouch, A ;
Sun, WM ;
Nicholson, AW .
RIBONUCLEASES, PT B, 2001, 342 :143-158
[3]   A natural classification of ribonucleases [J].
Aravind, L ;
Koonin, EV .
RIBONUCLEASES, PT A, 2001, 341 :3-28
[4]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[5]   Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage [J].
Blaszczyk, J ;
Tropea, JE ;
Bubunenko, M ;
Routzahn, KM ;
Waugh, DS ;
Court, DL ;
Ji, XH .
STRUCTURE, 2001, 9 (12) :1225-1236
[6]   Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III [J].
Calin-Jageman, I ;
Amarasinghe, AK ;
Nicholson, AW .
NUCLEIC ACIDS RESEARCH, 2001, 29 (09) :1915-1925
[7]   Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III:: Insights into mechanism and conformational changes associated with binding and catalysis [J].
Campbell, FE ;
Cassano, AG ;
Anderson, VE ;
Harris, ME .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 317 (01) :21-40
[8]   MUTATIONAL ANALYSIS OF A RIBONUCLEASE-III PROCESSING SIGNAL [J].
CHELLADURAI, B ;
LI, HL ;
ZHANG, KJ ;
NICHOLSON, AW .
BIOCHEMISTRY, 1993, 32 (29) :7549-7558
[9]   A CONSERVED SEQUENCE ELEMENT IN RIBONUCLEASE-III PROCESSING SIGNALS IS NOT REQUIRED FOR ACCURATE INVITRO ENZYMATIC CLEAVAGE [J].
CHELLADURAI, BS ;
LI, HL ;
NICHOLSON, AW .
NUCLEIC ACIDS RESEARCH, 1991, 19 (08) :1759-1766
[10]  
Court D.L., 1993, CONTROL MESSENGER RN, P71, DOI DOI 10.1016/B978-0-08-091652-1.50009-8