Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae

被引:42
作者
Guillou, V
Plourde-Owobi, L
Parrou, JL
Goma, G
François, J
机构
[1] CNRS, Ctr Bioingn Gilbert Durand, Lab Biotechnol & Bioprocedes, UMR 5504, F-31077 Toulouse, France
[2] INRA, UMR 792, F-31077 Toulouse 04, France
关键词
trehalose; glycogen; continuous cultures; yeast dynamics; metabolic regulation;
D O I
10.1016/j.femsyr.2004.05.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The purpose of this study was to explore the role of glycogen and trehalose in the ability of Saccharomyces cerevisiae to respond to a sudden rise of the carbon flux. To this end, aerobic glucose-limited continuous cultures were challenged with a sudden increase of the dilution rate from 0.05 to 0.15 h -1. Under this condition, a rapid mobilization of glycogen and trehalose was observed which coincided with a transient burst of budding and a decrease of cell biomass. Experiments carried out with mutants defective in storage carbohydrates indicated a predominant role of glycogen in the adaptation to this perturbation. However, the real importance of trehalose in this response was veiled by the unexpected phenotypes harboured by the tps1 mutant, chosen for its inability to synthesize trehalose. First, the biomass yield of this mutant was 25% lower than that of the isogenic wild-type strain at dilution rate of 0.05 h -1, and this difference was annulled when cultures were run at a higher dilution rate of 0.15 h -1. Second, the tps1 mutant was more effective to sustain the dilution rate shift-up, apparently because it had a faster glycolytic rate and an apparent higher capacity to consume glucose with oxidative phosphorylation than the wild type. Consequently, a tps1gsy1gsy2 mutant was able to adapt to the dilution rate shift-up after a long delay, likely because the detrimental effects from the absence of glycogen was compensated for by the tps1 mutation. Third, a glg1Δglg2Δ strain, defective in glycogen synthesis because of the lack of the glycogen initiation protein, recovered glycogen accumulation upon further deletion of TPS1. This recovery, however, required glycogen synthase. Finally, we demonstrated that the rapid breakdown of reserve carbohydrates triggered by the shift-up is merely due to changes in the concentrations of hexose-6-phosphate and UDPglucose, which are the main metabolic effectors of the rate-limiting enzymes of glycogen and trehalose pathways. © 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:773 / 787
页数:15
相关论文
共 47 条
[41]   The danger of metabolic pathways with turbo design [J].
Teusink, B ;
Walsh, MC ;
van Dam, K ;
Westerhoff, HV .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (05) :162-169
[42]   An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains [J].
van Dijken, JP ;
Bauer, J ;
Brambilla, L ;
Duboc, P ;
Francois, JM ;
Gancedo, C ;
Giuseppin, MLF ;
Heijnen, JJ ;
Hoare, M ;
Lange, HC ;
Madden, EA ;
Niederberger, P ;
Nielsen, J ;
Parrou, JL ;
Petit, T ;
Porro, D ;
Reuss, M ;
van Riel, N ;
Rizzi, M ;
Steensma, HY ;
Verrips, CT ;
Vindelov, J ;
Pronk, JT .
ENZYME AND MICROBIAL TECHNOLOGY, 2000, 26 (9-10) :706-714
[43]   CHARACTERIZATION OF TREHALOSE-6-PHOSPHATE SYNTHASE AND TREHALOSE-6-PHOSPHATE PHOSPHATASE OF SACCHAROMYCES-CEREVISIAE [J].
VANDERCAMMEN, A ;
FRANCOIS, J ;
HERS, HG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 182 (03) :613-620
[44]   EFFECT OF BENZOIC-ACID ON METABOLIC FLUXES IN YEASTS - A CONTINUOUS-CULTURE STUDY ON THE REGULATION OF RESPIRATION AND ALCOHOLIC FERMENTATION [J].
VERDUYN, C ;
POSTMA, E ;
SCHEFFERS, WA ;
VANDIJKEN, JP .
YEAST, 1992, 8 (07) :501-517
[45]   CLONING OF 2 RELATED GENES ENCODING THE 56-KDA AND 123-KDA SUBUNITS OF TREHALOSE SYNTHASE FROM THE YEAST SACCHAROMYCES-CEREVISIAE [J].
VUORIO, OE ;
KALKKINEN, N ;
LONDESBOROUGH, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 216 (03) :849-861
[46]   NEW HETEROLOGOUS MODULES FOR CLASSICAL OR PCR-BASED GENE DISRUPTIONS IN SACCHAROMYCES-CEREVISIAE [J].
WACH, A ;
BRACHAT, A ;
POHLMANN, R ;
PHILIPPSEN, P .
YEAST, 1994, 10 (13) :1793-1808
[47]   TREHALOSE IN YEAST, STRESS PROTECTANT RATHER THAN RESERVE CARBOHYDRATE [J].
WIEMKEN, A .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 1990, 58 (03) :209-217