On the isolated spectrum of the Perron-Frobenius operator

被引:55
作者
Dellnitz, M [1 ]
Froyland, G [1 ]
Sertl, S [1 ]
机构
[1] Univ Gesamthsch Paderborn, Dept Math & Comp Sci, D-33095 Paderborn, Germany
关键词
D O I
10.1088/0951-7715/13/4/310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the existence of large isolated (non-unit) eigenvalues of the Perron-Frobenius operator for expanding interval maps. Corresponding to these eigenvalues (or 'resonances') are distributions which approach the invariant density (or equilibrium distribution) at a rate slower than that prescribed by the minimal expansion rate. We consider the transitional behaviour of the eigenfunctions as the eigenvalues cross this 'minimal expansion rate' threshold, and suggest dynamical implications of the existence and form of these eigenfunctions. A systematic means of constructing maps which possess such isolated eigenvalues is presented. AMS classification scheme numbers: 37A30(primary), 37E05, 37D20, 47A10, 47A15 (secondary).
引用
收藏
页码:1171 / 1188
页数:18
相关论文
共 11 条
[1]  
[Anonymous], INTRO SYMBOLIC DYNAM
[2]   INFINITE KNEADING MATRICES AND WEIGHTED ZETA-FUNCTIONS OF INTERVAL MAPS [J].
BALADI, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (01) :226-244
[3]  
BALADI V, 1995, ANN I H POINCARE-PHY, V62, P251
[4]   Random perturbations of chaotic dynamical systems: stability of the spectrum [J].
Blank, M ;
Keller, G .
NONLINEARITY, 1998, 11 (05) :1351-1364
[5]  
Boyarsky A., 1997, Laws ofChaos: Invariant Measures and Dynamical Systems in One Dimension
[6]   On the approximation of complicated dynamical behavior [J].
Dellnitz, M ;
Junge, O .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :491-515
[7]  
Erdelyi I., 1977, LECT NOTES MATH, V623
[9]  
Lasota A., 1994, APPL MATH SCI, V97
[10]  
Robinson C., 1995, Dynamical systems: stability, symbolic dynamics, and chaos