Molecular cloning of growth hormone-releasing hormone/pituitary adenylyl cyclase-activating polypeptide in the frog Xenopus laevis:: Brain distribution and regulation after castration

被引:34
作者
Hu, ZT [1 ]
Lelievre, V [1 ]
Tam, J [1 ]
Cheng, JW [1 ]
Fuenzalida, G [1 ]
Zhou, XR [1 ]
Waschek, JA [1 ]
机构
[1] Univ Calif Los Angeles, Dept Psychiat, Sch Med, Mental Retardat Res Ctr, Los Angeles, CA 90024 USA
关键词
D O I
10.1210/en.141.9.3366
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Pituitary adenylyl cyclase-activating peptide (PACAP) appears to regulate several neuroendocrine functions in the frog, but its messenger RNA (mRNA) structure and brain distribution are unknown. To understand the potential role of PACAP in the male frog hypothalamic-pituitary-gonadal axis, we cloned the frog Xenopus laevis PACAP mRNA and determined its distribution in the brain. We then analyzed the castration-induced alterations of mRNA expression for PACAP and its selective type I receptor (PAC(1)) in the hypothalamic anterior preoptic area, a region known to regulate reproductive function. The PACAP mRNA encodes a peptide precursor predicted to give rise to both GH-releasing hormone and PACAP. The deduced peptide sequence of PACAP-38 was nearly identical to that of human PACAP with one amino acid substitution. Abundant PACAP mRNA was detected in the brain, but not several other tissues, including the testis. In situ hybridization revealed strong expression of the PACAP gene in the dorsal pallium, ventral hypothalamus, and nuclei of cerebellum PACAP mRNA signals were weak to moderate in the hypothalamic anterior preoptic area and were absent in the pituitary. Castration induced an increase in the expression of PACAP and PAC(1) receptor mRNAs in the hypothalamic anterior preoptic area after 3 days. Replacement with testosterone prevented the castration induced changes. These results provide a molecular basis for studying the physiological functions of PACAP in frog brain and suggest that PACAP may be involved in the feedback regulation of hypothalamic-pituitary-gonadal axis.
引用
收藏
页码:3366 / 3376
页数:11
相关论文
共 58 条
[1]   A cloned frog vasoactive intestinal polypeptide pituitary adenylate cyclase-activating polypeptide receptor exhibits pharmacological and tissue distribution characteristics of both VPAC1 and VPAC2 receptors in mammals [J].
Alexandre, D ;
Anouar, Y ;
Jegou, S ;
Fournier, A ;
Vaudry, H .
ENDOCRINOLOGY, 1999, 140 (03) :1285-1293
[2]   TISSUE DISTRIBUTION OF PACAP AS DETERMINED BY RIA - HIGHLY ABUNDANT IN THE RAT-BRAIN AND TESTES [J].
ARIMURA, A ;
SOMOGYVARIVIGH, A ;
MIYATA, A ;
MIZUNO, K ;
COY, DH ;
KITADA, C .
ENDOCRINOLOGY, 1991, 129 (05) :2787-2789
[3]   Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems [J].
Arimura, A .
JAPANESE JOURNAL OF PHYSIOLOGY, 1998, 48 (05) :301-331
[4]  
ARIMURA A, 1992, REGUL PEPTIDES, V37, P287
[5]  
BISEBB CA, 1977, SCIENCE, V195, P785
[6]   ANDROGEN REGULATION OF NEUROMUSCULAR-JUNCTION STRUCTURE AND FUNCTION IN A SEXUALLY DIMORPHIC MUSCLE OF THE FROG XENOPUS-LAEVIS [J].
BRENNAN, C ;
HENDERSON, LP .
JOURNAL OF NEUROBIOLOGY, 1995, 27 (02) :172-188
[7]   Identification and characterization of a receptor from goldfish specific for a teleost growth hormone-releasing hormone-like peptide [J].
Chan, KW ;
Yu, KL ;
Rivier, J ;
Chow, BKC .
NEUROENDOCRINOLOGY, 1998, 68 (01) :44-56
[8]   PRIMARY STRUCTURE OF FROG PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE (PACAP) AND EFFECTS OF OVINE PACAP ON FROG PITUITARY [J].
CHARTREL, N ;
TONON, MC ;
VAUDRY, H ;
CONLON, JM .
ENDOCRINOLOGY, 1991, 129 (06) :3367-3371
[9]   Distribution of two molecular forms of gonadotropin-releasing hormone (GnRH) in the central nervous system of the frog Rana ridibunda [J].
Collin, F ;
Chartrel, N ;
Fasolo, A ;
Conlon, JM ;
Vandesande, F ;
Vaudry, H .
BRAIN RESEARCH, 1995, 703 (1-2) :111-128