Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase

被引:100
作者
Kern, R
Malki, A
Holmgren, A
Richarme, G
机构
[1] Univ Paris 07, Inst Jacques Monod, F-75005 Paris, France
[2] Karolinska Inst, Dept Med Biochem & Biophys, Med Nobel Inst Biochem, SE-17177 Stockholm, Sweden
关键词
oxidoreduction; protein folding; protein renaturation;
D O I
10.1042/BJ20030093
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Thioredoxin, thioredoxin reductase and NADPH form the thioredoxin system and are the major cellular protein disulphide reductase. We report here that Escherichia coli thioredoxin and thioredoxin reductase interact with unfolded and denatured proteins, in a manner similar to that of molecular chaperones that are involved in protein folding and protein renaturation after stress. Thioredoxin and/or thioredoxin reductase promote the functional folding of citrate synthase and a-glucosidase after urea denaturation. They also promote the functional folding of the bacterial galactose receptor, a protein without any cysteines. Furthermore, redox cycling of thioredoxin/thioredoxin reductase in the presence of NADPH and cystine stimulates the renaturation of the galactose receptor, suggesting that the thioredoxin system functions like a redox-powered chaperone machine. Thioredoxin reductase prevents the aggregation of citrate synthase under heat-shock conditions. It forms complexes that are more stable than those formed by thioredoxin with several unfolded proteins such as reduced carboxymethyl a-lactalbumin and unfolded bovine pancreatic trypsin inhibitor. These results suggest that the thioredoxin system, in addition to its protein disulphide isomerase activity possesses chaperone-like properties, and that its thioredoxin reductase component plays a major role in this function.
引用
收藏
页码:965 / 972
页数:8
相关论文
共 42 条
[1]   Physiological functions of thioredoxin and thioredoxin reductase [J].
Arnér, ESJ ;
Holmgren, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (20) :6102-6109
[2]   REGULATION OF CO2 ASSIMILATION IN OXYGENIC PHOTOSYNTHESIS - THE FERREDOXIN THIOREDOXIN SYSTEM - PERSPECTIVE ON ITS DISCOVERY, PRESENT STATUS, AND FUTURE-DEVELOPMENT [J].
BUCHANAN, BB .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1991, 288 (01) :1-9
[3]   GROE FACILITATES REFOLDING OF CITRATE SYNTHASE BY SUPPRESSING AGGREGATION [J].
BUCHNER, J ;
SCHMIDT, M ;
FUCHS, M ;
JAENICKE, R ;
RUDOLPH, R ;
SCHMID, FX ;
KIEFHABER, T .
BIOCHEMISTRY, 1991, 30 (06) :1586-1591
[4]   Chaperone properties of bacterial elongation factor EF-Tu [J].
Caldas, TD ;
El Yaagoubi, A ;
Richarme, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (19) :11478-11482
[5]   PROTEIN FOLDING PATHWAYS DETERMINED USING DISULFIDE BONDS [J].
CREIGHTON, TE .
BIOESSAYS, 1992, 14 (03) :195-200
[6]   Electron avenue: Pathways of disulfide bond formation and isomerization [J].
Debarbieux, L ;
Beckwith, J .
CELL, 1999, 99 (02) :117-119
[7]   MUTATIONS THAT ALLOW DISULFIDE BOND FORMATION IN THE CYTOPLASM OF ESCHERICHIA-COLI [J].
DERMAN, AI ;
PRINZ, WA ;
BELIN, D ;
BECKWITH, J .
SCIENCE, 1993, 262 (5140) :1744-1747
[8]   Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: Structural and functional characterization of mutants of Asp 26 and Lys 57 [J].
Dyson, HJ ;
Jeng, MF ;
Tennant, LL ;
Slaby, I ;
Lindell, M ;
Cui, DS ;
Kuprin, S ;
Holmgren, A .
BIOCHEMISTRY, 1997, 36 (09) :2622-2636
[9]  
Gilbert H.F., 1990, ADV ENZYMOL RAMB, V63, P69
[10]   Molecular chaperones in cellular protein folding [J].
Hartl, FU .
NATURE, 1996, 381 (6583) :571-580