Formation of superhydrophobic surfaces by biomimetic silicification and fluorination

被引:43
作者
Cho, Woo Kyung
Kang, Sung Min
Kim, Dong Jin
Yang, Sung Ho
Choi, Insung S. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem, Ctr Mol Design & Synthesis, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Mol Sci BK21, Ctr Mol Design & Synthesis, Taejon 305701, South Korea
关键词
D O I
10.1021/la062191a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this paper, we suggest a biomimetic method, "biosilicification", for generating heterogeneously rough structures and fabricating superhydrophobic surfaces. The superhydrophobic surface was prepared by a combination of the formation of heterogeneously rough, nanosphere-like silica structures through biosilicification and the formation of self-assembled monolayers of fluorosilane on the surface. The resulting surface exhibited the water contact angle of 160.1 and the very low water contact angle hysteresis of only 2.3, which are definite characteristics of superhydrophobic surfaces. The superhydrophobic property of our system probably resulted from the air trapped in the rough surface. The wetting behavior on the surface was in the heterogeneous regime, which was totally supported by Cassie-Baxter equation.
引用
收藏
页码:11208 / 11213
页数:6
相关论文
共 59 条
[1]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[2]   Preparation and characterization of a polyelectrolyte monolayer covalently attached to a planar solid surface [J].
Biesalski, M ;
Rühe, J .
MACROMOLECULES, 1999, 32 (07) :2309-2316
[3]   Self-cleaning surfaces - virtual realities [J].
Blossey, R .
NATURE MATERIALS, 2003, 2 (05) :301-306
[4]   Biomimetic synthesis of silica nanospheres depends on the aggregation and phase separation of polyamines in aqueous solution [J].
Brunner, E ;
Lutz, K ;
Sumper, M .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (04) :854-857
[5]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[6]   Control of wettability by anion exchange on Si/SiO2 surfaces [J].
Chi, YS ;
Lee, JK ;
Lee, S ;
Choi, IS .
LANGMUIR, 2004, 20 (08) :3024-3027
[7]   Reversible control of free energy and topography of nanostructured surfaces [J].
Fu, Q ;
Rao, GVR ;
Basame, SB ;
Keller, DJ ;
Artyushkova, K ;
Fulghum, JE ;
López, GP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (29) :8904-8905
[8]   Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces [J].
He, B ;
Patankar, NA ;
Lee, J .
LANGMUIR, 2003, 19 (12) :4999-5003
[9]   THE STEREOCHEMISTRY OF NUCLEOPHILIC-SUBSTITUTION AT TETRACOORDINATED SILICON [J].
HOLMES, RR .
CHEMICAL REVIEWS, 1990, 90 (01) :17-31
[10]   A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics [J].
Jiang, L ;
Zhao, Y ;
Zhai, J .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (33) :4338-4341