Computational mineral physics and the physical properties of perovskite
被引:17
作者:
Brodholt, JP
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Dept Earth Sci, London WC1E 6BT, EnglandUCL, Dept Earth Sci, London WC1E 6BT, England
Brodholt, JP
[1
]
Oganov, AR
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Dept Earth Sci, London WC1E 6BT, EnglandUCL, Dept Earth Sci, London WC1E 6BT, England
Oganov, AR
[1
]
Price, GD
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Dept Earth Sci, London WC1E 6BT, EnglandUCL, Dept Earth Sci, London WC1E 6BT, England
Price, GD
[1
]
机构:
[1] UCL, Dept Earth Sci, London WC1E 6BT, England
来源:
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
|
2002年
/
360卷
/
1800期
关键词:
perovskite;
lower mantle;
ab initio;
elastic constants;
alumina;
D O I:
10.1098/rsta.2002.1078
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The inherent uncertainties in modern first-principles calculations are reviewed using geophysically relevant examples. The elastic constants of perovskite at lower-mantle temperatures and pressures are calculated using ab initio molecular dynamics. These are used in conjunction with seismic tomographic models to estimate that the lateral temperature contrasts in the Earth's lower mantle are 800 K at a depth of 1000 km, and 1500 K at a depth of 2000 km. The effect of Al(3+) on the compressibility of MgSiO(3) perovskite is calculated using three different pseudopotentials. The results confirm earlier work and show that the compressibility of perovskites with Al(3+) substituted for both Si(4+) and Mg(2+) is very similar to the compressibility of Al(3+)-free perovskite. Even when 100% of the Si(4+) and Mg(2+) ions are replaced with Al(3+), the bulk modulus is only 7% less than that for Al(3+)-free perovskite. In contrast, perovskites where Al(3+) substitutes for Si(4+) only and that are charge balanced by oxygen vacancies do show higher compressibilities. When corrected to similar concentrations of Al(3+), the calculated compressibilities of the oxygen-vacancy-rich perovskites are in agreement with experimental results.