High efficiency and low voltage p-i-n electrophosphorescent OLEDs with double-doping emission layers

被引:5
作者
He, GF [1 ]
Gebeyehu, D [1 ]
Werner, A [1 ]
Pfeiffer, M [1 ]
Leo, K [1 ]
机构
[1] Tech Univ Dresden, Inst Angew Photophys, D-01062 Dresden, Germany
来源
ORGANIC OPTOELECTRONICS AND PHOTONICS | 2004年 / 5464卷
关键词
p-i-n structure; doped charge transport layers; phosphorescent OLED; high efficiency; low operating voltage; double emission layers;
D O I
10.1117/12.546729
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate high-efficiency organic light-emitting diodes (OLEDs) by incorporating a double emission layer (D-EML) into p-i-n-type cell architecture. The D-EML comprises two layers with ambipolar transport characteristics, both doped with the green phosphorescent dye tris(phenylpyridine)iridium [Ir(ppy)(3)]. The first EML features a bipolar, but predominantly hole transporting host material, 4,4',4"-tris(N-carbazolyl)-triphenylamine (TCTA), while the second EML is made of an exclusively electron transporting host, e.g. 3-phenyl-4-(1'-naphthyl)-5-phenyl-1,2,4-triazole (TAZ); with a weak hole transport capability arising from hopping between dopant sites. The D-EML system of two bipolar layers leads to an expansion of the exciton generation region. Due to its self-balancing character, it avoids accumulation of charge carriers at any interface. Thus, a power efficiency of approximately 77 lm/W and an external quantum efficiency of 19.3% are achieved at 100 cd/m(2) at an operating voltage of only 2.65V. More importantly, the efficiency decays only weakly with increasing brightness and a power efficiency of 50 lm/W is still obtained even at 4,000 cd/m(2).
引用
收藏
页码:26 / 31
页数:6
相关论文
共 22 条
[1]   High-efficiency red electrophosphorescence devices [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR ;
Lamansky, S ;
Thompson, ME ;
Kwong, RC .
APPLIED PHYSICS LETTERS, 2001, 78 (11) :1622-1624
[2]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[3]   High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR ;
Thompson, ME .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :904-906
[4]   Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film [J].
Adachi, Chihaya ;
Kwong, Raymond ;
Forrest, Stephen R. .
ORGANIC ELECTRONICS, 2001, 2 (01) :37-43
[5]   Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation [J].
Baldo, MA ;
Adachi, C ;
Forrest, SR .
PHYSICAL REVIEW B, 2000, 62 (16) :10967-10977
[6]   Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].
Baldo, MA ;
Lamansky, S ;
Burrows, PE ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :4-6
[7]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[8]   Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material [J].
Blochwitz, J ;
Pfeiffer, M ;
Fritz, T ;
Leo, K .
APPLIED PHYSICS LETTERS, 1998, 73 (06) :729-731
[9]   Interface electronic structure of organic semiconductors with controlled doping levels [J].
Blochwitz, J. ;
Fritz, T. ;
Pfeiffer, M. ;
Leo, K. ;
Alloway, D. M. ;
Lee, P. A. ;
Armstrong, N. R. .
ORGANIC ELECTRONICS, 2001, 2 (02) :97-104
[10]  
HE G, 2004, IN PRESS J APPL PHYS