GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization

被引:104
作者
Kotani, K
Peroni, OD
Minokoshi, Y
Boss, O
Kahn, BB
机构
[1] Beth Israel Deaconess Med Ctr, Div Endocrinol Diabet & Metab, Boston, MA 02215 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
[3] Natl Inst Physiol Sci, Dept Dev Physiol, Okazaki, Aichi 444, Japan
关键词
D O I
10.1172/JCI200421341
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
A critical defect in type 2 diabetes is impaired insulin-stimulated glucose transport and metabolism in muscle and adipocytes. To understand the metabolic adaptations this elicits, we generated mice with targeted disruption of the GLUT4 glucose transporter in both adipocytes and muscle (AMG4KO). In contrast to total body GLUT4-null mice, AMG4KO mice exhibit normal growth, development, adipose mass, and longevity. They develop fasting hyperglycemia and glucose intolerance and are at risk for greater insulin resistance than mice lacking GLUT4 in only one tissue. Hyperinsulinemic-euglycemic clamp studies showed a 75% decrease in glucose infusion rate and markedly reduced 2-deoxyglucose uptake into skeletal muscle (85-90%) and white adipose tissue (65%). However, AMG4KO mice adapt by preferentially utilizing lipid fuels, as evidenced by a lower respiratory quotient and increased clearance of lipids from serum after oral lipid gavage. While insulin action on hepatic glucose production and gluconeogenic enzymes is impaired, hepatic glucokinase expression, incorporation of C-14-glucose into lipids, and hepatic VLDL-triglyceride release are increased. The lipogenic activity may be mediated by increased hepatic expression of SREBP-1c and acetyl-CoA carboxylase. Thus, inter-tissue communication results in adaptations to impaired glucose transport in muscle and adipocytes that involve increased hepatic glucose uptake and lipid synthesis, while muscle adapts by preferentially utilizing lipid fuels. Genetic determinants limiting this "metabolic flexibility" may contribute to insulin resistance and type 2 diabetes in humans.
引用
收藏
页码:1666 / 1675
页数:10
相关论文
共 38 条
[1]   Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia hyperinsulinemia in normal man [J].
Aarsland, A ;
Chinkes, D ;
Wolfe, RR .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 98 (09) :2008-2017
[2]   Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1 [J].
Abe, H ;
Yamada, N ;
Kamata, K ;
Kuwaki, T ;
Shimada, M ;
Osuga, J ;
Shionoiri, F ;
Yahagi, N ;
Kadowaki, T ;
Tamemoto, H ;
Ishibashi, S ;
Yazaki, Y ;
Makuuchi, M .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (08) :1784-1788
[3]   Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver [J].
Abel, ED ;
Peroni, O ;
Kim, JK ;
Kim, YB ;
Boss, O ;
Hadro, E ;
Minnemann, T ;
Shulman, GI ;
Kahn, BB .
NATURE, 2001, 409 (6821) :729-733
[4]   Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart [J].
Abel, ED ;
Kaulbach, HC ;
Tian, R ;
Hopkins, JCA ;
Duffy, J ;
Doetschman, T ;
Minnemann, T ;
Boers, ME ;
Hadro, E ;
Oberste-Berghaus, C ;
Quist, W ;
Lowell, BB ;
Ingwall, JS ;
Kahn, BB .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (12) :1703-1714
[5]   Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism - Evidence for a defect in haptic glucokinase activity [J].
Basu, A ;
Basu, R ;
Shah, P ;
Vella, A ;
Johnson, CM ;
Nair, KS ;
Jensen, MD ;
Schwenk, WF ;
Rizza, RA .
DIABETES, 2000, 49 (02) :272-283
[6]   Type 2 diabetes impairs splanchnic uptake of glucose but does not alter intestinal glucose absorption during enteral glucose feeding - Additional evidence for a defect in hepatic glucokinase activity [J].
Basu, A ;
Basu, R ;
Shah, P ;
Vella, A ;
Johnson, CM ;
Jensen, M ;
Nair, KS ;
Schwenk, WF ;
Rizza, RA .
DIABETES, 2001, 50 (06) :1351-1362
[7]   Insulin dose-response curves for stimulation of splanchnic glucose uptake and suppression of endogenous glucose production differ in nondiabetic humans and are abnormal in people with type 2 diabetes [J].
Basu, R ;
Basu, A ;
Johnson, CM ;
Schwenk, WF ;
Rizza, RA .
DIABETES, 2004, 53 (08) :2042-2050
[8]   Diabetes mellitus and genetically programmed defects in β-cell function [J].
Bell, GI ;
Polonsky, KS .
NATURE, 2001, 414 (6865) :788-791
[9]   A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance [J].
Bruning, JC ;
Michael, MD ;
Winnay, JN ;
Hayashi, T ;
Horsch, D ;
Accili, D ;
Goodyear, LJ ;
Kahn, CR .
MOLECULAR CELL, 1998, 2 (05) :559-569
[10]   ANATOMICAL AND DEVELOPMENTAL PATTERNS OF FACILITATIVE GLUCOSE TRANSPORTER GENE-EXPRESSION IN THE RAT-KIDNEY [J].
CHIN, E ;
ZHOU, J ;
BONDY, C .
JOURNAL OF CLINICAL INVESTIGATION, 1993, 91 (04) :1810-1815