On lithium walls and the performance of magnetic fusion devices

被引:79
作者
Krasheninnikov, SI [1 ]
Zakharov, LE
Pereverzev, GV
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
关键词
D O I
10.1063/1.1558293
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown that lithium walls resulting in zero-recycling regimes at the edge of magnetic fusion device can cause dramatic improvements of core plasma performance. The plasma temperature at the wall in these regimes is much larger than in conventional tokamaks. It reduces the core temperature gradient and, thus, related anomalous transport, allowing an increase in the achievable beta to the level similar to20%, due to wall stabilization and second stability core. Fusion relevant plasma temperature over entire core and high beta results in a strong enhancement of fusion power density. Modeling of the International Thermonuclear Experimental Reactor performance in zero-recycling regimes shows so significant improvement that fusion power increases with no apparent limits due to elimination of the strong core temperature gradient and associated turbulent transport and due to expansion of the burning zone to the entire cross section. (C) 2003 American Institute of Physics.
引用
收藏
页码:1678 / 1682
页数:5
相关论文
共 11 条
[1]  
BARSUKOV AG, 1983, 9TH P INT C PLASM PH, V1, P83
[2]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[3]   ZERO-DIMENSIONAL RELATIONSHIPS OF TOKAMAK SCRAPE-OFF-LAYER PARAMETERS AND THE INFLUENCE OF THESE PARAMETERS ON TRANSPORT IN THE MAIN PLASMA [J].
DNESTROVSKIJ, AY ;
KRASHENINNIKOV, SI ;
YUSHMANOV, PN .
NUCLEAR FUSION, 1991, 31 (04) :647-661
[4]   Lithium divertor concept and results of supporting experiments [J].
Evtikhin, VA ;
Lyublinski, IE ;
Vertkov, AV ;
Mirnov, SV ;
Lazarev, VB ;
Petrova, NP ;
Sotnikov, SM ;
Chernobai, AP ;
Khripunov, BI ;
Petrov, VB ;
Prokhorov, DY ;
Korzhavin, VM .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (06) :955-977
[5]   QUANTITATIVE PREDICTIONS OF TOKAMAK ENERGY CONFINEMENT FROM FIRST-PRINCIPLES SIMULATIONS WITH KINETIC EFFECTS [J].
KOTSCHENREUTHER, M ;
DORLAND, W ;
BEER, MA ;
HAMMETT, GW .
PHYSICS OF PLASMAS, 1995, 2 (06) :2381-2389
[6]  
Krasheninnikov S. I., 1990, Soviet Journal of Plasma Physics, V16, P801
[7]  
MAJESKI R, 2001, 18 IAEA FUS EN C SOR
[8]   Observations concerning the injection of a lithium aerosol into the edge of TFTR discharges [J].
Mansfield, DK ;
Johnson, DW ;
Grek, B ;
Kugel, HW ;
Bell, MG ;
Bell, RE ;
Budny, RV ;
Bush, CE ;
Fredrickson, ED ;
Hill, KW ;
Jassby, DL ;
Maqueda, RJ ;
Park, HK ;
Ramsey, AT ;
Synakowski, EJ ;
Taylor, G ;
Wurden, GA .
NUCLEAR FUSION, 2001, 41 (12) :1823-1834
[9]  
Pereverzev G. V., 2002, 598 M PLANCK I PLASM
[10]  
SHIMOMURA Y, 2001, 18 IAEA FUS EN C SOR