Pricing options on scalar diffusions: An eigenfunction expansion approach

被引:90
作者
Davydov, D [1 ]
Linetsky, V
机构
[1] UBS Warburg, Equities Quantitat Strategies, Stamford, CT 06901 USA
[2] Northwestern Univ, McCormick Sch Engn & Appl Sci, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
关键词
D O I
10.1287/opre.51.2.185.12782
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper develops an eigenfunction expansion approach to pricing-options on scalar diffusion processes. All contingent claims are unbundled into portfolios of primitive securities called eigensecurities. Eigensecurities are eigenvectors (eigenfunctions) of the pricing operator (present value operator). All computational work is at the stage of finding eigenvalues and eigenfunctions of the pricing operator. The pricing is then immediate by the linearity of the pricing operator and the eigenvector property of eigensecurities. To illustrate the computational power of the method, we develop two applications: pricing vanilla, single- and double-barrier options under the constant elasticity of variance (CEV) process and interest rate knock-out options in the Cox-Ingersoll-Ross (CIR) term-structure model.
引用
收藏
页码:185 / 209
页数:25
相关论文
共 65 条
[1]  
Abate J., 1995, ORSA Journal on Computing, V7, P36, DOI 10.1287/ijoc.7.1.36
[2]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[3]  
[Anonymous], 1974, INTRO THEORY APPL LA
[4]  
[Anonymous], 1964, AM MATH SOC
[5]  
BEAGLEHOLE DR, 1991, TAX CLIENTELES STOCH
[6]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[7]  
Borodin AN., 2012, Journal of the Royal Statistical Society-Series A Statistics in Society
[8]   Pricing lookback and barrier options under the CEV process [J].
Boyle, PP ;
Tian, YS .
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1999, 34 (02) :241-264
[9]   AMERICAN CAPPED CALL OPTIONS ON DIVIDEND-PAYING ASSETS [J].
BROADIE, M ;
DETEMPLE, J .
REVIEW OF FINANCIAL STUDIES, 1995, 8 (01) :161-191
[10]  
Buchholz H, 1969, CONFLUENT HYPERGEOME