Answering the call: The influence of neuroimaging and electrophysiological evidence on rehabilitation

被引:32
作者
Boyd, Lara A.
Vidoni, Eric D.
Daly, Janis J.
机构
[1] Univ British Columbia, Sch Rehabil Sci, Vancouver, BC V6T 2B5, Canada
[2] Univ Kansas, Med Ctr, Dept Phys Therapy & Rehabil Sci, Lawrence, KS 66045 USA
[3] Case Western Reserve Univ, Sch Med, Dept Neurol, Cleveland, OH 44106 USA
[4] Louis Stokes Cleveland Dept Vet Affairs Med Ctr, Stroke Control & Motor Learning Lab, Cleveland, OH USA
来源
PHYSICAL THERAPY | 2007年 / 87卷 / 06期
关键词
D O I
10.2522/ptj.20060164
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Functional recovery after brain damage or disease is dependent on the neuroplastic capability of the cortex and the nonaffected brain. Following cortical injury in the motor and sensory regions, the adjacent spared neural tissues and related areas undergo modifications that are required in order to drive more normal motor control. Current rehabilitation models seek to stimulate functional recovery by capitalizing on the inherent potential of the brain for positive reorganization after neurological injury or disease. This article discusses how neuroimaging and electrophysiological data can inform clinical practice; representative data from the modalities of functional magnetic resonance imaging, diffusion tensor imaging, magnetoencephalography, electroencephalography, and positron emission tomography are cited. Data from a variety of central nervous system disease and damage models are presented to illustrate how rehabilitation practices are beginning to be shaped and informed by neuroimaging and electrophysiological data.
引用
收藏
页码:684 / 703
页数:20
相关论文
共 118 条
[1]   Can stroke patients walk after complete lateral corticospinal tract injury of the affected hemisphere? [J].
Ahn, Young Hwan ;
Ahn, Sang Ho ;
Kim, Hoeon ;
Hong, Ji Hun ;
Jang, Sung Ho .
NEUROREPORT, 2006, 17 (10) :987-990
[2]   Brain injury rehabilitation: what works for whom and when? [J].
Bajo, A ;
Fleminger, S .
BRAIN INJURY, 2002, 16 (05) :385-395
[3]   Quantitative magnetic resonance imaging in traumatic brain injury [J].
Bigler, ED .
JOURNAL OF HEAD TRAUMA REHABILITATION, 2001, 16 (02) :117-134
[4]   Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control:: Investigations with H2 15O PET [J].
Boecker, H ;
Dagher, A ;
Ceballos-Baumann, AO ;
Passingham, RE ;
Samuel, M ;
Friston, KJ ;
Poline, JB ;
Dettmers, C ;
Conrad, B ;
Brooks, DJ .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (02) :1070-1080
[5]  
Bondi MW, 1993, NEUROPSYCHOLOGY, V7, P89, DOI DOI 10.1037/0894-4105.7.1.89
[6]   Providing explicit information disrupts implicit motor learning after basal ganglia stroke [J].
Boyd, LA ;
Winstein, CJ .
LEARNING & MEMORY, 2004, 11 (04) :388-396
[7]   Inflammation and degeneration in multiple sclerosis [J].
Brück, W ;
Stadelmann, C .
NEUROLOGICAL SCIENCES, 2003, 24 (Suppl 5) :S265-S267
[8]   Functional neuroimaging studies of motor recovery after stroke in adults - A review [J].
Calautti, C ;
Baron, JC .
STROKE, 2003, 34 (06) :1553-1566
[9]   Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis [J].
Cao, Y ;
D'Olhaberriague, L ;
Vikingstad, EM ;
Levine, SR ;
Welch, KMA .
STROKE, 1998, 29 (01) :112-122
[10]   fMRI analysis of ankle movement tracking training in subject with stroke [J].
Carey, JR ;
Anderson, KM ;
Kimberley, TJ ;
Lewis, SM ;
Auerbach, EJ ;
Ugurbil, K .
EXPERIMENTAL BRAIN RESEARCH, 2004, 154 (03) :281-290