Fabrication of Titania Nanotube Arrays in Viscous Electrolytes

被引:23
作者
Mohamed, Ahmed El Ruby [1 ]
Kasemphaibulsuk, Nualjarose [1 ]
Rohani, Sohrab [1 ]
Barghi, Shahzad [1 ]
机构
[1] Univ Western Ontario, Dept Chem & Biochem Engn, London, ON N6A 5B9, Canada
关键词
Titania Nanotube Arrays; Anodization; Water Splitting; Hydrogen Production; Solar Applications; Doping; Bandgap Engineering; ANODIC TIO2 NANOTUBES; SOLAR-HYDROGEN; THIN-FILMS; MU-M; WATER; DIOXIDE; GROWTH; RECOMBINATION; ANODIZATION; MORPHOLOGY;
D O I
10.1166/jnn.2010.2102
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study probes the dependence of titania nanotube arrays nanoarchitecture on different synthesis parameters in viscous electrolytes. Titania nanotube arrays were synthesized in glycerol, ethylene glycol and carboxymethylcellulose as base materials. The effects of anodization voltage and time, as well as chemical composition and pH of the electrolyte bath were studied. Nanotube arrays with an inner diameter ranging from 16 to 91 nm, and wall thickness ranging from 7 to 29 nm were fabricated in a glycerol-water electrolyte. Water content of 5 wt% or higher was found to be essential for nanotubes fabrication in glycerol electrolyte. Diameter and length were influenced by varying water content above 5 wt%. Nanotube length was found to be time dependent at high pH values. A pH value of 6 was favorable for fabrication of highly ordered and continuous nanotube arrays with length up to 900 nm. Using modified ethylene glycol (containing 2 wt% and 0.5 wt% NH4F) instead of glycerol, resulted in nanotube length up to 430 nm after 1.5 hr anodization time. With a minor modification of electrochemical anodization cell, we successfully fabricated double-sided titania nanotube arrays layers with a total thickness of 9.5 mu m for the first time. Nantube arrays were successfully fabricated in 2 wt% sodium carboxy mythylcellulose aqueous electrolyte (CMC electrolyte). These nanotube arrays had an inner diameter of 42 nm similar to those fabricated in 2 wt% urea-ethylene glycol electrolyte but their length was 450 nm.
引用
收藏
页码:1998 / 2008
页数:11
相关论文
共 48 条
[1]   250 μm long anodic TiO2 nanotubes with hexagonal self-ordering [J].
Albu, Sergiu P. ;
Ghicov, Andrei ;
Macak, Jan M. ;
Schmuki, Patrik .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2007, 1 (02) :R65-R67
[2]   The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes [J].
Bavykin, DV ;
Parmon, VN ;
Lapkin, AA ;
Walsh, FC .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (22) :3370-3377
[3]   Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization [J].
Cai, Qingyun ;
Yang, Lixia ;
Yu, Yan .
THIN SOLID FILMS, 2006, 515 (04) :1802-1806
[4]   The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation [J].
Cai, QY ;
Paulose, M ;
Varghese, OK ;
Grimes, CA .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (01) :230-236
[5]   THE ROLE OF METAL-ION DOPANTS IN QUANTUM-SIZED TIO2 - CORRELATION BETWEEN PHOTOREACTIVITY AND CHARGE-CARRIER RECOMBINATION DYNAMICS [J].
CHOI, WY ;
TERMIN, A ;
HOFFMANN, MR .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (51) :13669-13679
[6]   Electrons in nanostructured TiO2 solar cells:: transport, recombination and photovoltaic properties [J].
Frank, AJ ;
Kopidakis, N ;
van de Lagemaat, J .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1165-1179
[7]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[8]   Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes [J].
Ghicov, Andrei ;
Macak, Jan M. ;
Tsuchiya, Hiroaki ;
Kunze, Julia ;
Haeublein, Volker ;
Frey, Lothar ;
Schmuki, Patrik .
NANO LETTERS, 2006, 6 (05) :1080-1082
[9]   Titanium oxide nanotube arrays prepared by anodic oxidation [J].
Gong, D ;
Grimes, CA ;
Varghese, OK ;
Hu, WC ;
Singh, RS ;
Chen, Z ;
Dickey, EC .
JOURNAL OF MATERIALS RESEARCH, 2001, 16 (12) :3331-3334
[10]  
GUOZHONG C, 2004, NANOSTRUCTURES NANOM, P15