Farming options for The Netherlands explored by multi-objective modelling

被引:70
作者
ten Berge, HFM
van Ittersum, MK
Rossing, WAH
van de Ven, GWJ
Schans, J
van de Sanden, PACM
机构
[1] Plant Res Int, NL-6700 AA Wageningen, Netherlands
[2] Wageningen Univ Agr, Dept Theoret Prod Ecol, NL-6700 AK Wageningen, Netherlands
[3] CML, Ctr Environm Sci, NL-2300 RA Leiden, Netherlands
[4] Plant Protect Serv, NL-6700 HC Wageningen, Netherlands
[5] Wageningen Univ, Grp Plant Prod Syst, NL-6700 AK Wageningen, Netherlands
[6] Wageningen Univ, Grp Biol Farming Syst, NL-6709 PG Wageningen, Netherlands
关键词
farming systems; exploration; modelling; intensive farming; multiple goal; optimisation;
D O I
10.1016/S1161-0301(00)00078-2
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Intensive agriculture in The Netherlands has a price in the form of environmental degradation and the diminution of nature and landscape values. A reorientation of farming is needed to find a new balance between economic goals and rural employment, and care for clean water and air, animal well-being, safe food, and the preservation of soil, landscape and biodiversity. The search for farm systems that meet such multiple goals requires a systematic combination of (a agrotechnical, agroecological and agroeconomic knowledge, with (b) the stakeholders' joint agreement on normative objectives, to arrive at conceptual new designs followed by (c) empirical work to test, adapt and refine these under real commercial farming conditions. In this paper explorative modelling at the whole farm level is presented as a method that effectively integrates component knowledge at crop or animal level, and outlines the consequences of particular choices on scientific grounds. This enables quantitative consideration of a broad spectrum of alternative farming systems, including very innovative and risky ones, before empirical work starts. It thus contributes to a transparent learning and development process needed to arrive at farm concepts acceptable to both entrepreneurs and society. Three case studies are presented to illustrate the method: dairy farming on sandy soils: highly intensified flower bulb industry in sensitive areas in the western Netherlands; and integrated arable farming. Trade-offs between economic and environmental objectives were assessed in all three cases, as well as virtual farm configurations that best satisfy specified priority settings. In two of the three cases the mutual reinforcement and true integration of modelling and on-farm empirical research appeared difficult, but for obvious reasons. Only in the flower bulb case was the explorative approach utilized to its full potential by involving a broad platform of stakeholders. The other two case studies lacked such formalised platforms and their impact remained limited. Three critical success factors for explorative modelling are identified: to cover a well-differentiated spectrum of possible production technologies; early timing of modelling work relative to empirical farm prototyping; and involvement of stakeholders throughout. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:263 / 277
页数:15
相关论文
共 32 条
[1]  
AARTS HFM, 1990, 131 CABO
[2]  
[Anonymous], 1993, FDN CONSTRAINT SATIS
[3]  
CASTRO E, 1998, POLITICAS USO SOSTEN, P53
[4]   DETERMINATION OF INPUT AND OUTPUT COEFFICIENTS OF CROPPING SYSTEMS IN THE EUROPEAN-COMMUNITY [J].
DEKONING, GHJ ;
VANKEULEN, H ;
RABBINGE, R ;
JANSSEN, H .
AGRICULTURAL SYSTEMS, 1995, 48 (04) :485-502
[5]   APPLICATION OF INTERACTIVE MULTIPLE GOAL PROGRAMMING TECHNIQUES FOR ANALYSIS AND PLANNING OF REGIONAL AGRICULTURAL-DEVELOPMENT [J].
DEWIT, CT ;
VANKEULEN, H ;
SELIGMAN, NG ;
SPHARIM, I .
AGRICULTURAL SYSTEMS, 1988, 26 (03) :211-230
[6]  
French S., 1983, MULTIOBJECTIVE DECIS
[7]  
HABEKOTTE B, 1994, 34 CABOTT
[8]  
HABEKOTTE B, 1996, 64 ABDLO
[9]  
HARWOOD RR, 1990, SUSTAINABLE AGRICULTURAL SYSTEMS, P3
[10]  
HENRICHSMEYER W, 1998, SCHRIFTENREIHE DER F, V312