ELF4 is required for oscillatory properties of the circadian clock

被引:119
作者
McWatters, Harriet G.
Kolmos, Elsebeth
Hall, Anthony
Doyle, Mark R.
Amasino, Richard M.
Gyula, Peter
Nagy, Ferenc
Millar, Andrew J.
Davis, Seth J.
机构
[1] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
[2] Max Planck Inst Plant Breeding, D-50829 Cologne, Germany
[3] Univ Liverpool, Sch Biol Sci, Liverpool L69 7ZB, Merseyside, England
[4] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[5] Hungarian Acad Sci, Biol Res Ctr, Inst Plant Biol, H-6726 Szeged, Hungary
[6] Univ Edinburgh, Inst Mol Plant Sci, Edinburgh EH9 3JH, Midlothian, Scotland
关键词
D O I
10.1104/pp.107.096206
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Circadian clocks are required to coordinate metabolism and physiology with daily changes in the environment. Such clocks have several distinctive features, including a free-running rhythm of approximately 24 h and the ability to entrain to both light or temperature cycles (zeitgebers). We have previously characterized the EARLY FLOWERING4 (ELF4) locus of Arabidopsis ( Arabidopsis thaliana) as being important for robust rhythms. Here, it is shown that ELF4 is necessary for at least two core clock functions: entrainment to an environmental cycle and rhythm sustainability under constant conditions. We show that elf4 demonstrates clock input defects in light responsiveness and in circadian gating. Rhythmicity in elf4 could be driven by an environmental cycle, but an increased sensitivity to light means the circadian system of elf4 plants does not entrain normally. Expression of putative core clock genes and outputs were characterized in various ELF4 backgrounds to establish the molecular network of action. ELF4 was found to be intimately associated with the CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LONG ELONGATED HYPOCOTYL (LHY)-TIMING OF CAB EXPRESSION1 (TOC1) feedback loop because, under free run, ELF4 is required to regulate the expression of CCA1 and TOC1 and, further, elf4 is locked in the evening phase of this feedback loop. ELF4, therefore, can be considered a component of the central CCA1/LHY-TOC1 feedback loop in the plant circadian clock.
引用
收藏
页码:391 / 401
页数:11
相关论文
共 51 条
[1]   Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis [J].
Alabadí, D ;
Yanovsky, MJ ;
Más, P ;
Harmer, SL ;
Kay, SA .
CURRENT BIOLOGY, 2002, 12 (09) :757-761
[2]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[3]   Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock [J].
Allen, Trudie ;
Koustenis, Athanasios ;
Theodorou, George ;
Somers, David E. ;
Kay, Steve A. ;
Whitelam, Garry C. ;
Devlin, Paul F. .
PLANT CELL, 2006, 18 (10) :2506-2516
[4]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[5]   ELF3 modulates resetting of the circadian clock in Arabidopsis [J].
Covington, MF ;
Panda, S ;
Liu, XL ;
Strayer, CA ;
Wagner, DR ;
Kay, SA .
PLANT CELL, 2001, 13 (06) :1305-1315
[6]   The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants [J].
Davis, SJ ;
Bhoo, SH ;
Durski, AM ;
Walker, JM ;
Vierstra, RD .
PLANT PHYSIOLOGY, 2001, 126 (02) :656-669
[7]   Two circadian timing circuits in Neurospora crassa cells share components and regulate distinct rhythmic processes [J].
de Paula, Renato M. ;
Lewis, Zachary A. ;
Greene, Andrew V. ;
Seo, Kyung Suk ;
Morgan, Louis W. ;
Vitalini, Michael W. ;
Bennett, Lindsay ;
Gomer, Richard H. ;
Bell-Pedersen, Deborah .
JOURNAL OF BIOLOGICAL RHYTHMS, 2006, 21 (03) :159-168
[8]   Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage [J].
Dodd, AN ;
Salathia, N ;
Hall, A ;
Kévei, E ;
Tóth, R ;
Nagy, F ;
Hibberd, JM ;
Millar, AJ ;
Webb, AAR .
SCIENCE, 2005, 309 (5734) :630-633
[9]   The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana [J].
Doyle, MR ;
Davis, SJ ;
Bastow, RM ;
McWatters, HG ;
Kozma-Bognár, L ;
Nagy, F ;
Millar, AJ ;
Amasino, RM .
NATURE, 2002, 419 (6902) :74-77
[10]   Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock [J].
Farré, EM ;
Harmer, SL ;
Harmon, FG ;
Yanovsky, MJ ;
Kay, SA .
CURRENT BIOLOGY, 2005, 15 (01) :47-54