A spurious equilibria-free learning algorithm for the blind separation of non-zero skewness signals

被引:8
作者
Choi, SJ
Liu, RW
Cichocki, A
机构
[1] Chungbuk Natl Univ, Sch Elect & Elect Engn, Chungbuk 361763, South Korea
[2] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[3] RIKEN, Brain Sci Inst, Lab Open Informat Syst, Wako, Saitama 3511, Japan
关键词
blind source separation; higher-order statistics; neural networks; unsupervised learning;
D O I
10.1023/A:1009688827236
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new learning algorithm for the blind separation of independent source signals having non-zero skewness (the 3rd-order cumulant) (the source signals have non-symmetric probability distribution.), from their linear mixtures. It is shown that for a class of source signals whose probability distribution functions is not symmetric, a simple adaptive learning algorithm using quadratic function (f(x) = x(2)) is very efficient for blind source separation task. It is proved that all stable equilibria of the proposed learning algorithm are desirable solutions. Extensive computer simulation experiments confirmed the validity of the proposed algorithm.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 8 条
[1]  
AMARI S, 1995, ADV NEURAL INFORMATI, V8
[2]  
Amari S., 1995, P INT S NONL THEOR A, VI, P37
[3]  
[Anonymous], ARTIFICIAL INTELLIGE
[4]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[5]   Equivariant adaptive source separation [J].
Cardoso, JF ;
Laheld, BH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) :3017-3030
[6]  
CICHOCKI A, 1994, INT S ART NEUR NETW
[7]  
MOREAU E, 1993, IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS 93 : TECHNICAL PROGRAM, CONFERENCE RECORD, VOLS 1-3, P1154, DOI 10.1109/ICC.1993.397458
[8]  
OJA E, 1996, NEUR INF PROC SYST W