Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought

被引:67
作者
Pegoraro, E [1 ]
Rey, A
Bobich, EG
Barron-Gafford, G
Grieve, KA
Malhi, Y
Murthy, R
机构
[1] Columbia Univ, Biosphere Lab 2, Oracle, AZ 85623 USA
[2] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JU, Midlothian, Scotland
关键词
Biosphere; 2; Laboratory; carbon loss; cottonwood; elevated CO2; intercellular CO2 concentration; isoprene production; photosynthesis; Populus deltoides; stomatal conductance; water-stress;
D O I
10.1071/FP04142
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To further our understanding of the influence of global climate change on isoprene production we studied the effect of elevated [CO2] and vapour pressure deficit (VPD) on isoprene emission rates from leaves of Populus deltoides Bartr. during drought stress. Trees, grown inside three large bays with atmospheres containing 430, 800, or 1200 mumol mol(-1) CO2 at the Biosphere 2 facility, were subjected to a period of drought during which VPD was manipulated, switching between low VPD ( approximately 1 kPa) and high VPD ( approximately 3 kPa) for several days. When trees were not water-stressed, elevated [CO2] inhibited isoprene emission and stimulated photosynthesis. Isoprene emission was less responsive to drought than photosynthesis. As water-stress increased, the inhibition of isoprene emission disappeared, probably as a result of stomatal closure and the resulting decreases in intercellular [CO2] (C-i). This assumption was supported by increased isoprene emission under high VPD. Drought and high VPD dramatically increased the proportion of assimilated carbon lost as isoprene. When measured at the same [CO2], leaves from trees grown at ambient [CO2] always had higher isoprene emission rates than the leaves of trees grown at elevated [CO2], demonstrating that CO2 inhibition is a long-term effect.
引用
收藏
页码:1137 / 1147
页数:11
相关论文
共 39 条
[1]   THE FLUXES AND AIR CHEMISTRY OF ISOPRENE ABOVE A DECIDUOUS HARDWOOD FOREST [J].
BALDOCCHI, D ;
GUENTHER, A ;
HARLEY, P ;
KLINGER, L ;
ZIMMERMAN, P ;
LAMB, B ;
WESTBERG, H .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 351 (1696) :279-296
[2]   Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) Saplings [J].
Brüggemann, N ;
Schnitzler, JP .
PLANT BIOLOGY, 2002, 4 (04) :456-463
[3]   Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment [J].
Centritto, M ;
Nascetti, P ;
Petrilli, L ;
Raschi, A ;
Loreto, F .
PLANT CELL AND ENVIRONMENT, 2004, 27 (04) :403-412
[4]   Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J].
Cox, PM ;
Betts, RA ;
Jones, CD ;
Spall, SA ;
Totterdell, IJ .
NATURE, 2000, 408 (6809) :184-187
[5]   A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide [J].
Curtis, PS .
PLANT CELL AND ENVIRONMENT, 1996, 19 (02) :127-137
[6]   RAPID APPEARANCE OF C-13 IN BIOGENIC ISOPRENE WHEN (CO2)-C-13 IS FED TO INTACT LEAVES [J].
DELWICHE, CF ;
SHARKEY, TD .
PLANT CELL AND ENVIRONMENT, 1993, 16 (05) :587-591
[7]   ISOPRENE EMISSION RATE AND INTERCELLULAR ISOPRENE CONCENTRATION AS INFLUENCED BY STOMATAL DISTRIBUTION AND CONDUCTANCE [J].
FALL, R ;
MONSON, RK .
PLANT PHYSIOLOGY, 1992, 100 (02) :987-992
[8]  
Fang CW, 1996, TREE PHYSIOL, V16, P441
[9]   EMISSIONS OF VOLATILE ORGANIC COMPOUNDS FROM VEGETATION AND THE IMPLICATIONS FOR ATMOSPHERIC CHEMISTRY [J].
Fehsenfeld, Fred ;
Calvert, Jack ;
Fall, Ray ;
Goldan, Paul ;
Guenther, Alex ;
Hewitt, C. ;
Lamb, Brian ;
Liu, Shaw ;
Trainer, Michael ;
Westberg, Hal ;
Zimmerman, Pat .
GLOBAL BIOGEOCHEMICAL CYCLES, 1992, 6 (04) :389-430
[10]   STOMATAL RESPONSES TO INCREASED CO2 - IMPLICATIONS FROM THE PLANT TO THE GLOBAL-SCALE [J].
FIELD, CB ;
JACKSON, RB ;
MOONEY, HA .
PLANT CELL AND ENVIRONMENT, 1995, 18 (10) :1214-1225