On the Solvability of the Stokes and Navier-Stokes Problems in the Domains That Are Layer-Like at Infinity

被引:27
作者
Nazarov, S. A. [1 ]
Pileckas, K. [2 ,3 ]
机构
[1] Inst Mech Engn Problems, Lab Math Modelling, VO Bolshoy Pr 61, St Petersburg 199178, Russia
[2] Inst Math & Informat, Akad 4, LT-2600 Vilnius, Lithuania
[3] Kyoto Univ, Kyoto 6068501, Japan
关键词
Stokes and Navier-Stokes equations; weak solutions; layer-like domains;
D O I
10.1007/s000210050005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weak solutions to the Stokes and Navier-Stokes problems are proved to exist in domains which, outside a ball, coincide with the three-dimensional layer R-2 x (0, 1). Apart from solutions with the finite Dirichlet integral, solutions to the linear problem are constructed with a prescribed behavior at infinity such that the plane-parallel Poiseuille and Couette flows, the rotational flow. A solution to the nonlinear problem is found that drives a nonzero flux to infinity and becomes unique under the data smallness assumption. Estimates for weighted norms of the pressure are derived as well.
引用
收藏
页码:78 / 116
页数:39
相关论文
共 22 条
[1]  
[Anonymous], 1994, IZV ROSS AKAD NAUK M
[2]  
[Anonymous], ELLIPTIC BOUNDARY VA
[3]  
[Anonymous], 1969, MATH THEORY VISCOUS
[4]   UNIQUENESS QUESTIONS IN THEORY OF VISCOUS-FLOW [J].
HEYWOOD, JG .
ACTA MATHEMATICA, 1976, 136 (1-2) :61-102
[5]  
Kapitanski L.V., 1983, BOUND VALUE PROBL, V159, P5
[6]  
Ladyzenskaya O., 1980, Zap. Nauchn. Sem. S.- Peterburg. Otdel. Mat. Inst., V96, P117
[7]  
Ladyzhenskaya O. A., 1976, Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 9. Zap. Naun. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), V59, P81
[8]  
LADYZHENSKAYA OA, 1977, VESTN S-P UNIV SER 7, P39
[9]  
Michlin S. G., 1977, LINEAR PARTIAL DIFFE
[10]  
Nazarov S. A., 1996, ALGEBR ANAL, V8, P57