Nonlinear matter wave dynamics with a chaotic potential

被引:98
作者
Gardiner, SA [1 ]
Jaksch, D
Dum, R
Cirac, JI
Zoller, P
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Ecole Normale Super, Lab Kastler Brossel, F-75231 Paris 05, France
来源
PHYSICAL REVIEW A | 2000年 / 62卷 / 02期
关键词
D O I
10.1103/PhysRevA.62.023612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the case of a cubic nonlinear Schrodinger equation with an additional chaotic potential, in the sense that such a potential produces chaotic dynamics in classical mechanics. We derive and describe an appropriate semiclassical limit to such a nonlinear Schrodinger equation, using a semiclassical interpretation of the Wigner function, and relate this to the hydrodynamic limit of the Gross-Pitaevskii equation used in the context of Bose-Einstein condensation. We investigate a specific example of a Gross-Pitaevskii equation with such a chaotic potential, the one-dimensional delta-kicked harmonic oscillator, and its semiclassical limit, discovering in the process an interesting interference effect, where increasing the strength of the repulsive nonlinearity promotes localization of the wave function. We explore the feasibility of an experimental realization of such a system in a Bose-Einstein condensate experiment, giving a concrete proposal of how to implement such a configuration, and considering the problem of condensate depletion.
引用
收藏
页数:21
相关论文
共 73 条
[1]   THE WIDTH OF THE STOCHASTIC WEB AND PARTICLE DIFFUSION ALONG THE WEB [J].
AFANASIEV, VV ;
CHERNIKOV, AA ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1990, 144 (4-5) :229-236
[2]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[3]  
[Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
[4]  
Arnol'd V. I., 1963, Uspehi Mat. Nauk, V18, P85, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[5]  
Arnold VI, 1964, SOV MATH DOKL, V5, P581
[6]   HIGH-ORDER SPLIT-STEP EXPONENTIAL METHODS FOR SOLVING COUPLED NONLINEAR SCHRODINGER-EQUATIONS [J].
BANDRAUK, AD ;
SHEN, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (21) :7147-7155
[7]   LOCALIZATION OF CLASSICALLY CHAOTIC DIFFUSION FOR HYDROGEN-ATOMS IN MICROWAVE FIELDS [J].
BAYFIELD, JE ;
CASATI, G ;
GUARNERI, I ;
SOKOL, DW .
PHYSICAL REVIEW LETTERS, 1989, 63 (04) :364-367
[8]   Ground-state properties of magnetically trapped Bose-condensed rubidium gas [J].
Baym, G ;
Pethick, CJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :6-9
[9]   MANIFESTATIONS OF CLASSICAL AND QUANTUM CHAOS IN NONLINEAR-WAVE PROPAGATION [J].
BENVENUTO, F ;
CASATI, G ;
PIKOVSKY, AS ;
SHEPELYANSKY, DL .
PHYSICAL REVIEW A, 1991, 44 (06) :R3423-R3426
[10]   THE PROBLEM OF QUANTUM CHAOS IN A KICKED HARMONIC-OSCILLATOR [J].
BERMAN, GP ;
RUBAEV, VY ;
ZASLAVSKY, GM .
NONLINEARITY, 1991, 4 (02) :543-566