Effect of reaction media on the growth and photoluminescence of colloidal CdSe nanocrystals

被引:41
作者
Yu, K [1 ]
Singh, S [1 ]
Patrito, N [1 ]
Chu, V [1 ]
机构
[1] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada
关键词
D O I
10.1021/la049202p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using cadium oxide (CdO) as the Cd precursor and tri-n-octylphosphine selenide (TOPSe) as the Se source, TOP-capped and TOP/tri-n-octylphosphine oxide (TOPO)-capped CdSe nanocrystals were synthesized without the use of an acid. The synthetic approach involved the addition of a TOPSe/TOP solution into a CdO/TOP solution with or without TOPO at one temperature and subsequent growth at a lower temperature. The temporal evolution of the optical properties, namely, absorption and luminescence, of the growing nanocrystals was monitored in detail. A comprehensive examination on the control of the photoluminescence (PL) properties was performed by systematically varying the TOP/TOPO weight ratio of the reaction media. Surprisingly, a rational choice of 100% TOP or 80% TOP was found to produce "quality" nanocrystals when monitored under the present experimental conditions and growth-time scale. The term "quality" is mainly based on the sharp features and rich substructure exhibited in the absorption spectra of the growing nanocrystals, as well as the sharp features in the emission spectra with narrow full width at half-maximum (fwhm). There are two distinguishable stages of growth: an early stage (<5 min) and a later stage. TOP plays a major role in the control of a slow growth rate in the early stage, while TOPO controls slow growth in the later stage. The optical sensitivity of the growing nanocrystals when dispersed in nonpolar or polar solvents was studied, including two size-dependent parameters, namely, the solvent sensitivity (PL intensity) and nonresonant Stokes shift (NRSS). The insights gained from the present study enable a synthetic approach in which high-quality CdSe nanocrystals are achieved with high synthetic reproducibility.
引用
收藏
页码:11161 / 11168
页数:8
相关论文
共 23 条
[1]   INVESTIGATION OF THE SURFACE-MORPHOLOGY OF CAPPED CDSE NANOCRYSTALLITES BY P-31 NUCLEAR-MAGNETIC-RESONANCE [J].
BECERRA, LR ;
MURRAY, CB ;
GRIFFIN, RG ;
BAWENDI, MG .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (04) :3297-3300
[2]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[3]   New synthetic routes for quantum dots [J].
Crouch, D ;
Norager, S ;
O'Brien, P ;
Park, JH ;
Pickett, N .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803) :297-310
[4]   In vivo imaging of quantum dots encapsulated in phospholipid micelles [J].
Dubertret, B ;
Skourides, P ;
Norris, DJ ;
Noireaux, V ;
Brivanlou, AH ;
Libchaber, A .
SCIENCE, 2002, 298 (5599) :1759-1762
[5]   ABSORPTION AND INTENSITY-DEPENDENT PHOTOLUMINESCENCE MEASUREMENTS ON CDSE QUANTUM DOTS - ASSIGNMENT OF THE 1ST ELECTRONIC-TRANSITIONS [J].
EKIMOV, AI ;
HACHE, F ;
SCHANNEKLEIN, MC ;
RICARD, D ;
FLYTZANIS, C ;
KUDRYAVTSEV, IA ;
YAZEVA, TV ;
RODINA, AV ;
EFROS, AL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (01) :100-107
[6]   Molecular profiling of single cells and tissue specimens with quantum dots [J].
Gao, XH ;
Nie, SM .
TRENDS IN BIOTECHNOLOGY, 2003, 21 (09) :371-373
[7]   Individual mesoscopic structures studied with sub-micrometer optical detection techniques: CdSe nanocrystals capped with TOPO and ZnS-overcoated system [J].
Hashizume, K ;
Matsubayashi, M ;
Vacha, M ;
Tani, T .
JOURNAL OF LUMINESCENCE, 2002, 98 (1-4) :49-56
[8]   Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes [J].
Hu, JT ;
Odom, TW ;
Lieber, CM .
ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (05) :435-445
[9]   Biologists join the dots [J].
Klarreich, E .
NATURE, 2001, 413 (6855) :450-452
[10]   Confinement effects and tunnelling through quantum dots [J].
Lannoo, M ;
Delerue, C ;
Allan, G ;
Niquet, YM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803) :259-272