Structural properties of solutions to total variation regularization problems

被引:103
作者
Ring, W [1 ]
机构
[1] Graz Univ, Inst Math, A-8010 Graz, Austria
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2000年 / 34卷 / 04期
关键词
total variation regularization; piecewise constant function; convex optimization; Lebesgue decomposition; singular measures;
D O I
10.1051/m2an:2000104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In dimension one it is proved that the solution to a total variation-regularized least-squares problem is always a function which is "constant almost everywhere", provided that the data are in a certain sense outside the range of the operator to be inverted. A similar, but weaker result is derived in dimension two.
引用
收藏
页码:799 / 810
页数:12
相关论文
共 18 条
[1]   ANALYSIS OF BOUNDED VARIATION PENALTY METHODS FOR ILL-POSED PROBLEMS [J].
ACAR, R ;
VOGEL, CR .
INVERSE PROBLEMS, 1994, 10 (06) :1217-1229
[2]  
[Anonymous], 1989, GRAD TEXTS MATH
[3]  
Barbu V, 1993, Mathematics in Science and Engineering, V190
[4]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[5]  
Chavent G., 1997, ESAIM Control Optim. Calc. Var., V2, P359
[6]   Analysis of regularized total variation penalty methods for denoising [J].
Dobson, D ;
Scherzer, O .
INVERSE PROBLEMS, 1996, 12 (05) :601-617
[7]   Recovery of blocky images from noisy and blurred data [J].
Dobson, DC ;
Santosa, F .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (04) :1181-1198
[8]  
EKELAND I, 1983, CHICAGO LECT MATH
[9]  
Evans L. C., 2018, Measure Theory and Fine Properties of Functions
[10]  
GILBARG D, 1977, GRUNDLEHREN MATH WIS, V224